離脱防止機能を有する合成鋼管を用いた

曲線敷設工法の開発実験報告書

平成 28 年 3 月

国立研究開発法人 農業・食品産業技術総合研究機構

農村工学研究所

日本ヒューム株式会社

1		背景.		1
2	2.	研究の	の目的および概要	2
ġ	3.	実験材	既要および方法	3
	3	. 1	離脱防止継手付き合成鋼管の概要	3
	3	. 2	供試管	4
	3	. 3	埋め戻し材料	5
	3	. 4	現地盤	5
	3	. 5	実験管路	6
	3	. 6	実験ケースおよび工程	11
	3	. 7	計測項目および方法	14
4	ł.	実験約	結果および考察	21
	4	. 1	CASE1(常時、安全率 0.98)	21
	4	. 2	CASE2(常時、安全率 0.55)	26
	4	. 3	CASE3(常時、安全率 0.35)	31
	4	. 4	CASE4(常時、安全率 0.35、内水圧繰り返し負荷)	36
	4	. 5	CASE5(地震時、曲線部背面掘削)	41
	4	. 6	CASE6(地震時、曲線部背面掘削、内水圧繰返し負荷)	45
	4	. 7	CASE7(地震時、曲線部背面掘削+埋戻し土撤去)	49
	4	. 8	CASE8(地震時、管路全長背面掘削+埋戻し土撤去)	53
	4	. 9	考察	57
5	5.	まとる	ø	60
	5	. 1	常時のスラスト力に対する曲げ配管設計の検証	60
	5	. 2	地震動による地盤の剛性低下に対する離脱防止継手機能の検証	60
	5	. 3	スラスト力に対する離脱防止継手性能の検証	60

参考資料1 土質試験結果

地盤材料の工学的分類	62
土粒子の密度試験(検定、測定)	63
土の粒度試験(粒径加積曲線)	64
突き固めによる土の締固め試験(締固め特性)	65
土の三軸試験の供試体作製・設置	66
土の三軸圧縮試験[CD](圧密前、圧密後圧密量-時間曲線)	67
土の三軸圧縮試験[CD](応力・ひずみ曲線)	68
三軸圧縮試験[CD](強度特性)	69
土質試験結果一覧表(基礎地盤)	70
土質試験結果一覧表(材料)	71
突き固めによる土の締固め試験(測定)	72
土の粒度試験(2mm ふるい通過分分析)	73
土の粒度試験(ふるい分析)	74
コアカッターによる密度試験結果一覧	75
◎考資料2 水平スラスト力の計算方法	78
≥考資料3 実験写真	80

1.背景

農業用パイプラインは中山間地に敷設されることが多く、直線部と屈曲部とを効率良く配置して路線を 構築している。管路の屈曲部には曲管が用いられて、スラスト対策としてコンクリートブロックを構築するこ とが一般的である。そのため、建設費用の増大や施工が煩雑になるなどの課題があった。そこで、効率的 なパイプラインの路線選定と配管構造を実現するため、FRPM 管を対象に、継手部の伸縮機能を利用し て曲線状に敷設する工法の研究開発(農林水産省官民連携新技術研究開発事業 H15~H17)が行わ れ、『可とう性継手による曲げ配管工法 設計・施工指針(案)』が策定された¹⁾。また、高圧で、管体剛 性や継手構造が異なるダクタイル鉄管についても同様の研究が実施され、曲線敷設の考え方の適用範 囲がダクタイル鉄管にも拡大された²⁾。しかしながら、これらの管材は、継手の屈曲角の制限やパイプの 長さから、比較的緩やかな曲線線形では敷設できるが、構造的に急曲線敷設には適していない。

そこで、高内水圧に適用可能で、かつ急曲線曲げ配管施工が可能なパイプとして、コンクリートと鋼管の複合構造の合成鋼管を対象に、曲線敷設工法の適用性の検証を行った。合成鋼管は急曲線推進施工に数多くの実績のある管材である。規格内径は最大 3000mm、許容抜出し長 60mm の差し込み継手で、特に 60mm 以上の継手抜け出しに対しては、離脱防止機能が働き、鎖構造管路として機能する。パイプの有効長は 0.4m~2.43m までの 5 種類の長さを標準としており、広範囲の曲率半径の曲げ配管施工が開削工法、または推進工法によって構築できる。

合成鋼管に対し、本指針(案)の適用が確認できれば、従来、曲管を使用していた大口径で急曲線 の屈曲部においても、曲線敷設工法が適用できる。曲管と大規模なスラストブロックの構築が不要なた め、コストが縮減される。また、スラストブロックの構築が不要であれば、曲線部においても非開削ででき る推進工法の適用が可能になる。全線に非開削での高圧の多屈曲パイプラインを構築することができる ので、設計・施工上の自由度が大きく向上することが期待できる。

2. 研究の目的および概要

本研究の目的は、急曲線敷設が可能な合成鋼管に対して、曲線敷設工法の適用性を検証するもの である。また、合成鋼管の継手の離脱防止性能により鎖構造管路を構築して、スラスト力に対する抵抗 性を確認した。さらに、地震時の地盤変状として管路背面の一部の地盤を掘削した条件で内圧を負荷 する実験を行い、急曲線部およびそれに接続する直線部において、合成鋼管の離脱防止機能によっ て鎖構造管路として有効に機能することを検証した。本研究では、 ϕ 800 の合成鋼管 12 本を用いて、 延長 17mの曲線敷設の管路を地中に埋設し、1MPaの内水圧を負荷する実験を行った。また、地震時 の管の安全性を検討するため、土被りを変更したり、管路背面の地盤を掘削したり、地盤条件を変更し た。主な検証項目を下記(1)~(3)に示す。

(1) 常時のスラストカに対する曲げ配管設計

合成鋼管の継手の可とう性を活用した曲線敷設において『可とう性継手による曲げ配管工法設計・施 工指針(案)』(以降、曲げ配管工法指針(案)と称する)の考え方を適用できることを検証する。

曲げ配管工法指針(案)では、スラストカに対する安全率は1.5以上とされている。継手の離脱防止が機能していない状態で、スラストカに対する安全率が1.5を下回る条件で実験を行い、当該指針(案)の考え 方を合成鋼管を用いた曲線敷設に適用できることを検証する。

(2) 地震動による地盤の剛性低下に対する離脱防止継手の機能

曲げ配管工法指針(案)で、構造物によるスラスト防護が必要と判定されるような、安全率 1.5 を下回る 曲げ配管(急曲線敷設)を行った場合でも、継手の離脱防止機能によりスラスト防護が不要となることを検 証する。上記(1)で確認した配管条件よりも更に安全率を低下させ、常時、または地震時を想定した埋設 条件を再現する。このような埋設条件で、管路がスラスト力により滑動する場合であっても、合成鋼管継手 の離脱防止機能により一体管路を構築し、スラスト対策が不要となることを検証する。合成鋼管の継手の 伸縮可とう性と耐震性を活用し、鎖構造管路を構築できることを検証する。

(3) スラストカに対する離脱防止継手の性能

スラストカが作用する急曲線部および隣接する直線部で、最も危険な状態の想定として、地盤変状に よって背面抵抗土圧が消失した状態を再現する。このような埋設条件でも、継手の伸縮機能と離脱防止 機能により、許容抜出し長以上の継手の抜け出しが抑制され、管路が一体として追従する鎖構造管路を 構築できることを検証する。また、離脱防止継手のスラストカに対する強度が、継手の耐水圧から定まる 合成鋼管の使用条件に対して十分な強度を有していることを確認する。

上記の各項目を検証し、開削工法、推進工法を問わず曲線敷設工法が適用でき、設計施工の自由度 が拡大されることで、多様な建設用地に経済的に耐震性を有するパイプラインの構築が可能になる。

3. 実験概要および方法

3.1 離脱防止継手付き合成鋼管の概要

離脱防止継手付き合成鋼管(以下、合成鋼管と称す)は、コンクリートに外圧を負担させ、鋼管に内水 圧を負担させるべく設計されたコンクリートと鋼管の複合管である。遠心力成形された膨張性コンクリート の膨張力を、外殻鋼管が拘束することによって効率よくプレストレスを導入した高強度の内圧パイプであ る。内水圧には強いが外圧には変形しやすい鋼管と、外圧には強いが内水圧には弱いコンクリート管の 両者の長所を生かし、互いの欠点を補うことにより効果的に内外圧荷重に対抗する、技術的にも優れた 経済的なパイプである。³⁾ コンクリートと鋼管厚の設定次第で内外圧強度は自由に設計できることが特長 である。

合成鋼管は、昭和41年に開発されてから農業用水パイプラインをはじめ、工業用水パイブライン等の 開削工法用の内圧パイプとして採用され、継手は鋼管と同様に現場での電気溶接を標準としていた。³⁾

近年になり推進工法による下水道管路の構築が盛んになると、継手はシールゴムを用いた高水密性の 差し込み継手に改良され、継手の抜け出しによって曲線推進施工に対応し、合成鋼管の高強度特性を 活用した大深度地下や、短尺管による急曲線推進施工への適用が増加した。このような経緯から現在の 合成鋼管は、コンクリートと鋼管による合成管としての内外強度特性を引継ぎ、急曲線推進施工に対応し たことで、既に約50kmにおよぶ実績を有している。

急曲線推進では、継手の抜出し長の制約から有効長の短い管を使用することが多いが、有効長が短く なるほど推進施工中の局部応力などの影響が大きくなる。合成鋼管では内外圧強度が大きいばかりでな く、このような局部応力に対しても高い耐力を有している。そのため、40cm程度の極端に短い有効長の パイプでも安心して急曲線推進施工に使用することができる。

合成鋼管の継手部の概要は図3.1のとおりである。継手はカラーに差口を挿入する差し込み継手構 造となっており、図3.1は左側に位置するカラー側の管に、右側から差口を継いだ様子を示す。抜け出 しによってカラーの角鋼が止めネジに接触すると離脱防止抵抗力が発生する。止水ゴムと土砂流入防止 ゴムを一体化したシール材をカラー側、角鋼の隣に接着した構造である。水密性を保ったままでの 60mm の伸び能力、これによる曲げ能力、そしてその後の離脱防止機能を有している。この離脱防止継 手によって、合成鋼管によるパイプラインは、地盤変位に対応するための耐震性を備えた鎖構造管 路として機能させることができる。

図3.1 離脱防止継手付き合成鋼管の継手形状

3.2 供試管

実験管路を構成する供試管は、表3.1に示す内径 800mm の合成鋼管とした。図3.2には管体 図を示す。

内径	(mm)	800
長さ	(m)	2.43/2.25/0.4
管厚	(mm)	80
外殻鋼管厚	(mm)	4.5
外圧強さ	(kN/m)	141
内圧強さ	(MPa)	0.8
継手性能		
耐水圧	(MPa)	0.8
許容抜出長	(mm)	60
離脱抵抗力	(kN)	420
許容曲げ角度	(°)	3
設計曲げ角度	(°)	1.5

表3.1 合成鋼管の仕様

図3.2 合成鋼管の管体図

3.3 埋め戻し材料

埋め戻し材料は霞ヶ浦砂を用いた。粒度分布を表3.2、図3.3に示す。

最大粒径	mm	9.5
60%粒径 D ₆₀	mm	0.573
50%粒径 D50	mm	0.410
30%粒径 D ₃₀	mm	0.293
10%粒径 D ₁₀	mm	0.081
均等係数 Uc		7
曲率係数 Uc,		1.9
土粒子の密度 <i>ρ</i> s	g/cm ³	2.696

表3.2 埋戻し材料の粒度分布

図3.3 埋め戻し材料(霞ヶ浦砂)の粒度分布

3. 4 現地盤

実験は茨城県つくば市の農村工学研究所敷地内の野外フィールドで実施し、現地盤の土質は関 東ロームであった。実験管路の地盤からサンプリングした材料による土質試験結果を参考資料 1 に示す。

3.5 実験管路

実験管路の仕様を表3.3に、実験管路の配置を図3.4~3.8に示す。内径800mm、継手の 離脱防止機能を有する合成鋼管を12本用いて管路を構築し、この内6本の管長400mmのパイプを曲 げ配管した。曲線区間の5箇所の継手は許容曲げ角度3°に、曲線の始点・終点は、曲げ配管工法指針 (案)に準じ、許容曲げ角度の1/2の設計曲げ角度1.5°とした。曲線部全体としては18°の曲げ配管とした。 ただし、通常の設計施工において曲線敷設するときの継手屈曲角は設計曲げ角度以下、始点・終点の 継手屈曲角はその1/2としている。本試験では継手の屈曲角度を設計上限の2倍に設定した。なお、管 の両端部に作用するスラストカへの抵抗力として、PC 鋼棒(φ40mm、4本)を管の両端部に相互に固定 した。

CASE1~8 までの試験条件で、段階的に安全率を低下させるように、土被りや背面地盤掘削等 の埋設条件を変化させ、スラスト力に対する安全率を変更した。実験は徐々に管路にとって厳し い条件になるようにして、安全率が低下するに従い、曲線部の継手が抜け出して離脱防止継手が 機能し、その効果を確認できるようにした。

内径	(mm)	800
管路長	(m)	17.06
直線部	(m)	14.46
曲線部	(m)	2.6
曲線半径	(m)	8.27
1本当たり曲げ角度	(°)	3/1.5
合計曲げ角度	(°)	18

表3.3 実験管路の仕様

図3.7 実験管の配置(CASE7)

D-D CASE8 8 据削部

図3.8 実験管の配置(CASE8)

図3.9に供試管の抜出し長および抜け出し余裕長を示す。各供試管の継手は、60mmの伸縮性 能を有している。曲線部中央(図3.4に示す継手番号4~8)の1ヶ所あたり3°の屈曲角で接合し た継手の曲線外側の抜出し長を58mmとし、残り2mmの抜け出し余裕長を持たせて敷設した。 また、曲線部の始点・終点(図3.4に示す継手番号3、9)の1.5°の屈曲角で接合した継手の曲線 外側の抜出し長は33mmとし、残り27mmの抜け出し余裕長を持たせて敷設した。直線部は抜 出し長60mmとし、抜け出し余裕長のない状態で敷設した。なお、曲線敷設部の継手のカラー側 端面には、緩衝材として厚さ9mmの合板を設置している(図3.10)。

図3.9 抜出し長および抜け出し余裕長

図3.10 緩衝材(合板)の配置

3.6 実験ケースおよび工程

実験ケースは表3.4に示すCASE1からCASE8の8ケースであり、段階的にスラスト力に対す る安全率を低下させるよう試験条件を変化させ、管路の水平移動量、継手間隔の変化、および土 圧を計測した。CASE1からCASE4は常時を想定した試験条件であるが、安全率1以下の厳しい条 件で試験を行った。CASE5~CASE7は、地震時の液状化や地盤の剛性低下を想定した試験条件 である。管にとって最も厳しい条件として背面掘削により地盤の反力が無い状態にし、液状化に よる地盤の剛性低下を再現した。CASE8は、離脱防止継手の強度確認のため、継手の規格値の水 圧を負荷し管の挙動を確認した。各実験ケースと研究目的の対応は下記の通りである。

実験 ケース	離脱防止 有効/無効		安全率 ※	土被り 掘削等 (m)	内水圧 繰り返し回数 (MPa)	目的
1	- 常時	無	0.98	1.2	0.5	DCI、FRPMと同様、「曲げ配管工法指 針(案)」の考え方が適用できることを実 証する。
2		11	0.55	0.6	0.6	IJ
3		有	0.36	0.2	0.65	安全率が不足する急曲線敷設であって も、離脱防止継手によって安定するこ とを実証する。
4		11	11	11	0.65 13サイクル	IJ
5	地震時	11	_	0.2 曲線部近接掘削	0.65	地震動による地盤の緩みや液状化を想 定し、安全率を更に低下した実験を行 うため背面掘削を行い、離脱防止継手 によって安定することを実証する。
6		11	_	IJ	0.3~0.65 36サイクル	地震動による地盤の緩みや液状化に よっても、離脱防止継手によって安定 することを実証する。
7		11	_	0.0 曲線部背面掘削	0.65	IJ
8 継手の		の性育	能試験	0.0 管路全長背面掘削	0.8	継手の規格耐水圧と等しい内水圧を負 荷し、スラスト力に対する継手の強度 を確認する。また、隣接する継手を引 出し、鎖構造管路として機能すること を実証する。

表3.4 実験ケース

※安全率の計算は、参考資料2による。

(1) CASE1 および CASE2: 研究目的(1) に対応

曲げ配管工法指針(案)で規定された安全率 1.5 を下回る厳しい試験条件で、スラスト力による水 平移動量を計測し、曲げ配管工法指針(案)の考え方を合成鋼管によるパイプラインに適用しても十 分に安全であるか検証する。

(2)CASE3~CASE7:研究目的(2)に対応

CASE3、CASE4 では、安全率が CASE2 を大きく下回り、実際にスラスト力による滑動が生 じる条件で、継手の離脱防止が機能する状態にまで継手を抜け出して水平移動量を計測する。離 脱防止継手がスラスト力に抵抗し滑動を抑制することによって、スラストブロックが無くても管 路が安定することを確認する。このことによって、合成鋼管を用いれば、スラストブロックが不 要となるパイプラインの設計が可能であることを検証する。

CASE5~CASE7 は、地震時を想定した実験である。地震による液状化や地盤の剛性が低下した状態を曲線部の背面地盤の掘削によって再現し、管路の水平移動量を計測する。地震動によって背面抵抗土圧が低減、または消失してしまった状態であっても、離脱防止継手がスラスト力による継手の抜け出しを抑制することを検証する。なお、CASE4、CASE6、CASE7 では、繰り返し内水圧負荷を行なう。

(3)CASE8:研究目的(3)に対応

CASE8 では、実験管路全長に渡って背面地盤を全部掘削した。管路がスラスト力により滑動す る条件で、継手が許容抜出し長を超えて抜け出そうとする時、離脱防止機能が発揮され、曲線部 に隣接する継手を引出し、鎖構造管路として機能することを検証する。更に、継手の規格耐水圧 と等しい内水圧を負荷し、合成鋼管の離脱防止継手のスラスト力に対する安全性を確認する。

3.6.4 実験工程

表3.5に示す日程で実験を実施した。

		平成2			成27年	 E度				平成28年度			
項目	担当	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
実験計画立案・決定	甲・乙	♦											
共同研究手続き	甲・乙		ţ										
共同研究開始	甲・乙					+							
事前(丘場)実験	甲・乙							•	•				
工事発注関係準備	乙(施工業者)							•	•				
実験機器・センサー準備	乙(施工業者)							•	•				
実験管路施工·撤収	乙(施工業者)								•				
結果取りまとめ	Z												< →

表 3.5 実験工程

甲:農村工学研究所

乙:日本ヒューム株式会社

3.7 計測項目および方法

3.7.1 継手間隔

図3.11に示すように、供試管の継手部(11箇所)外面に防水型変位計(東京測器研究所製) を設置し、継手間隔の変化を測定した。

図3.11 防水型変位計設置図

防水型変位計の設置状況を写真3.1、写真3.2に示す。

写真3.1 防水型変位計設置状況

写真3.2 防水型変位計設置状況

3.7.2 水平移動量

図3.12に示すように、曲線部の継手(7箇所)および両側の管端部(2箇所)の9箇所について、曲率内側の管側部にワイヤ式変位計(東京測器研究所製)を設置し、管路の水平方向の移動量を計測した。

図3.12 ワイヤ式変位計設置図(水平方向)

ワイヤ式変位計の設置状況を写真3.3、写真3.4に示す。

写真3.3 ワイヤ式変位計設置(水平方向)

写真3.4 ワイヤ式変位計設置(水平方向)

3.7.3 管背面土圧

各管において、図3. 13に示す位置に、φ30 mmおよびφ100mmの土圧計(東京測器研究所 製)を計22 台設置し、管側に作用する水平土圧を測定した。

図3.13 土圧計設置図

土圧計の設置状況を写真3.5、写真3.6に示す。

写真3.5 土圧計設置状況

写真3.6 土圧計設置状況

3.7.4 内水圧

管路両端部のふたに接続した加圧用ホースに圧力変換器(東京測器研究所製)を接続し、試験管路の内水圧を測定した。内水圧の負荷方法は図3.14に示すようにダイヤフラム式定量ポンプを用いて各ケース毎に所定の内水圧を負荷した。また、ケースによっては、繰り返し内水圧を負荷した。圧力負荷の履歴は他の計測機器とともにデータロガーで記録した。

図3.14 内水圧負荷装置設置図

内水圧負荷装置設置状況を写真3.7、写真3.8に示す。

写真3.7 内水圧負荷装置設置状況

写真3.8 内水圧負荷装置設置状況

3.7.5 地盤密度

1) 材料試験

埋戻しに用いた霞ケ浦砂について,以下の物性試験を実施した。 試験結果は**参考資料1**に示す。

①土粒子の密度試験(JISA 1202)

②土の含水比試験(JISA 1203)

③土の粒度試験(JISA 1204)

④突固めによる土の締固め試験(JISA 1210)

⑤土の圧密排水(CD)三軸圧縮試験(JGS 0524)

現地盤の関東ロームについては、以下の物性試験を実施した。

試験結果は参考資料1に示す。

①土粒子の密度試験(JISA 1202)

②土の含水比試験(JISA 1203)

③土の粒度試験(JISA 1204)

④土の液性限界・塑性限界試験(JISA1205)

⑤土の三軸圧縮試験(UU)(JGS 0524)

2) 埋戻し砂の密度

図3.15に示す位置において、砂置換法により埋戻し転圧後の密度を計測した。 計測結果は参考資料1に示す。

図3.15 埋め戻し砂の密度の計測位置

4. 実験結果及び考察

- 4. 1 CASE1 (常時、安全率0.98)
- 4.1.1 目的

交角 18°の屈曲点に対し、曲管に替えて 7 箇所の継手を曲線敷設した管路に内水圧を作用させたときのスラスト力に対する管路の挙動を確認する。

4. 1. 2 試験条件

CASE1の試験条件を表4.1に示す。また、曲線敷設部の滑動に対する安全率の計算値を 表4.2に示す。安全率の計算は曲げ配管工法指針(案)に示された方法に従い、設計「パイプ ライン」の曲管の検討に準じた計算式を用いた。安全率は0.98であり、規定の1.5を下回っ ている。内水圧は0.2MPa、0.4MPa、0.5MPaの3段階で負荷し、各内水圧における保持時 間を5分とした。写真4.1およびに写真4.2に実験状況を示す。

設計安全率	0.98	
土被り	1.2m	
負荷内水圧	$0.0 \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.5 \text{MPa}$	3段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	なし	
離脱防止継手	機能前	

表4.1 CASE1の試験条件

表4. 2 CASE1 の 滑動に対する 安全率

項目	記号	単位	曲線内の継手
呼び径	D	mm	800
設計水圧	Η	MPa	0.50
屈曲角	θ	0	3.0
土被り	H_1	m	1.200
土の単位体積重量	w	kN/m^3	13.43
土の内部摩擦	φ	0	30
曲管のL1寸法	L_1	mm	200
曲管のL2寸法	L_2	mm	200
スラスト力	P'	kN	17.2
管挿し口外径断面積	a_c	m^2	0.658
管外径	D_{c}	mm	960
水平方向抵抗力	$\mathbf{R}_{\mathbf{h}}$	kN	16.9
曲管の受動土圧の補正係数	F		0.65
管背面の幅	B_b	m	0.400
背面土圧	B_p	kN/m^2	44.84
地表面から管底面までの深さ	H_2	m	2.160
地表面から管頂面までの深さ	H_1	m	1.200
受働土圧係数	K _p		3.0
安全率	S		0.98

写真4. 1 実験状況 (CASE1)

写真4. 2 実験状況 (CASE1)

4.1.3 試験結果

(1) 内水圧と管の水平移動量

内水圧と管の水平移動量を図4.1に示す。試験の結果、曲線部のスラスト力による水平 移動量は、最大でもD7(継手番号7)で約0.7mmであり、微小であった。

継手番号

図4.1 管の水平移動量(CASE1)

(2) 背面土圧

内水圧によるスラスト力で発生した背面土圧分布を図4.2に示す。なお、内圧を付加す る直前を0とした。

図4. 2 背面土圧分布(CASE1)

背面土圧は管路の水平移動量に対応しており、最も大きな移動量を示した D7 で最大の背面土 圧となった。また、曲線部では内水圧の増加に伴い背面土圧も増加した。なお、屈曲部に作用す るスラストカが管背面に均等に作用するものと仮定したとき、内水圧 0.5MPa 時の管の投影面積 で除した土圧の計算値は、曲線敷設中央部で44.8kPa となる。曲線中央部分(継手番号 4~8)の土 圧の実測値は、15kPa 程度で、計算値の 1/3 程度である。地盤と管外面との滑動に対する摩擦抵 抗や曲線部だけでなくこれに隣接する直線部の一部でもスラストカを負担したためと考えられる。

(3) 継手間隔

各継手に設置した変位計により計測した、各内水圧における継手間隔を図4.3および図4. 4に示す。

曲線区間の継手の抜け出しは 1mm 以下で、継手の離脱防止はまだ機能していない。曲線区間 の始点・終点(継手番号 3、9)の 1.5°で屈曲させた継手間隔は、許容曲げ角度 3.0°で敷設した箇所(継 手番号 4~8)の継手間隔よりも変化が大きい。

継手番号

図4.3 継手間隔 (CASE1 屈曲外側)

図4. 4 継手間隔(CASE1 屈曲内側)

4.1.4 まとめ

土被り 1.2m、内水圧 0.5MPa、安全率を 0.98 の状態で、管路の挙動を確認した。曲げ配管工 法指針(案)でスラスト対策が必要とされている安全率 1.5 を下回る条件においても、管路の水平移 動量は 0.7mm と極めて微小であり、管の安全性を確認した。なお、継手間隔の開きは 1mm 以下 であり、離脱防止継手は機能していない状態である。

4. 2 CASE2 (常時、安全率 0.55)

4.2.1 目的
CASE1よりも土被りを小さくして厳しい条件として、内水圧負荷時の管の挙動を確認する。

4.2.2 試験条件

CASE2の試験条件を表4.3に示す。土被りを1.0mから0.6mと浅くし、内水圧を0.5MPa から0.6MPaに増圧することにより、滑動に対する安全率をCASE1の約1/2の0.55として、 規定の1.5を大幅に下回るよう設定した。曲線部の滑動に対する安全率の計算結果を表4. 4に示す。内水圧は0.2MPa、0.4MPa、0.6MPaの3段階で負荷し、各内水圧における保持 時間を5分とした。写真4.3およびに写真4.4に実験状況を示す。

設計安全率	0.55	
土被り	0.6m	
負荷内水圧	0.0→0.2→0.4→0.6MPa	3段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	なし	
離脱防止継手	機能前	

表 4. 3 CASE2 の試験条件

項目	記号	単位	曲線内の継手
呼び径	D	mm	800
設計水圧	Η	MPa	0.60
屈曲角	θ	0	3.0
土被り	H_1	m	0.600
土の単位体積重量	w	kN/m^3	14.10
土の内部摩擦	φ	0	30
曲管のL1寸法	L_1	mm	200
曲管のL2寸法	L_2	mm	200
スラスト力	Ρ'	kN	20.7
管挿し口外径断面積	a_c	m^2	0.658
管外径	D_{c}	mm	960
水平方向抵抗力	R_h	kN	11.4
曲管の受動土圧の補正係数	F		0.65
管背面の幅	B_b	m	0.400
背面土圧	B_p	kN/m^2	53.81
地表面から管底面までの深さ	H_2	m	1.560
地表面から管頂面までの深さ	H_1	m	0.600
受働土圧係数	K _p		3.0
安全率	S		0.55

表4. 4 CASE2の滑動に対する安全率

写真4. 3 実験状況(CASE2)

写真4. 4 実験状況 (CASE2)

4.2.3 試験結果

(1) 負荷内水圧と管の水平移動量

負荷内水圧と管の水平移動量を図4.5に示す。移動量は CASE1 終了時の残留変位を引継 ぎ、累積値で示している。試験の結果、曲線部のスラスト力による水平移動量の最大は、D5、 D7(継手番号5、7)で約1.15mm と微小であった。

図4.5 管の水平移動量(CASE2)

(2) 背面土圧

内水圧によるスラスト力に伴う背面土圧分布を図4.6に示す。背面土圧は管路の水平移動量 に対応した分布を示しており、許容曲げ角度3°に屈曲させた EP5~EP7(継手番号 5~7)で大きな 背面土圧が得られている。最大土圧は EP7 の 22.1kPa であった。

CASE1 と CASE2 を比較すると、0.2MPa、0.4MPa ではどちらもほほ同程度の土圧が生じて いるが、最高圧力が CASE1 の 0.5MPa から CASE2 の 0.6MPa に増圧したことによって、土圧 も増加し、その差は 4.7kPa(=22.1kPa-17.4kPa)であった。

また、内圧 0.6MPa 時の背面抵抗土圧の計算値は曲線敷設の中央部(継手番号 4~8)で 53.8kPa であり、実測値は計算値の約 1/2.5 となっている。CASE1 と同様に、地盤と管外面との滑動に対 する摩擦抵抗や曲線部だけでなくこれに隣接する直線部の一部でもスラスト力を負担したためと 考えられる。

図4. 6 背面土圧分布(CASE2)

(3) 継手間隔

各継手に設置した変位計により計測した、各内水圧における継手間隔の変化を図4.7、および 図4.8に示す。曲線区間の継手の抜け出しは2mm以下で、この状態でも継手の離脱防止は機 能していない。曲線敷設区間の許容曲げ角度3.0°で敷設した箇所(継手番号4~8)では、屈曲外側 の継手の抜け出しが屈曲内側の継手の抜け出しよりも大きいが、その最大値は0.15mmと微小で ある。始点・終点(継手番号3、9)の1.5°で屈曲させた継手は、許容曲げ角度3.0°で敷設した箇 所の継手間隔よりも変化が大きくなっている。

継手番号

図4.7 継手間隔(CASE2 屈曲外側)

図4.8 継手間隔(CASE2 屈曲内側)

4.2.4 まとめ

CASE2 では、土被りを 0.6m に減じ、かつ内水圧を 0.6MPa に昇圧することで、曲げ配管工法 指針(案)で規定された滑動に対する安全率 1.5 を大きく下回る 0.55 に低下させて試験を行った。 その結果、水平移動量、継手間隔の変化が増大したものの、その値は微小であった。また、継手 間隔の変化は 2mm 以下であり、管軸方向変位は継手の離脱防止が機能するまでには至らなかっ た。 4. 3 CASE3 (常時、安全率 0.36)

4.3.1 目的

CASE2 よりもさらに厳しい条件を設定し、滑動に伴う継手の抜け出しによって離脱防止が 機能した状態を再現し、内水圧負荷時の管の挙動を確認する。

4.3.2 試験条件

CASE3 の試験条件を表4.5に示す。本試験では管路の土被りを 0.2m と浅くし、内水圧 を 0.65MPa に増圧したことにより、曲線区間の継手部の安全率は 0.36 と規定の 1.5 を大きく 下回るよう設定した。安全率の計算結果を表4.6に示す。内水圧は 0.2MPa、0.4MPa、0.6MPa、 0.65MPa の 4 段階で負荷し、各内水圧における保持時間を 5 分とした。また、写真4.5 お よび写真4.6に実験状況を示す。

		衣4.5 CASESの試験未計	
	設計安全率	0.36	
·	土被り	0.2m	
	負荷内水圧	$0.0 \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.6 \rightarrow 0.65 \text{MPa}$	4段階昇圧
	内水圧保持時間	各内水圧ステップとも5分	
	繰返し負荷	なし	
	離脱防止継手	機能前	

表 4. 5 CASE3の試験条件

表4.	6	CASE3の滑動に対する安全率
1	0	

項目	記号	単位	曲線内の継手
呼び径	D	mm	800
設計水圧	Η	MPa	0.65
屈曲角	θ	0	3.0
土被り	H_1	m	0.200
土の単位体積重量	w	kN/m^3	16.00
土の内部摩擦	φ	0	30
曲管のL1寸法	L_1	mm	200
曲管のL2寸法	L_2	mm	200
スラスト力	P'	kN	22.4
管挿し口外径断面積	a _c	m^2	0.658
管外径	D _c	mm	960
水平方向抵抗力	R_{h}	kN	8.1
曲管の受動土圧の補正係数	F		0.65
管背面の幅	B_b	m	0.400
背面土圧	B_p	kN/m^2	58.29
地表面から管底面までの深さ	H_2	m	1.160
地表面から管頂面までの深さ	H_1	m	0.200
受働土圧係数	K _p		3.0
安全率	S		0.36

写真4.5 実験状況(CASE3)

写真4. 6 実験状況 (CASE3)

4.3.3 試験結果

(1) 内水圧と管の水平移動量

内水圧と管の水平移動量を図4.9に示す。移動量は CASE2 終了時の残留変位を引継ぎ、 累積値で示している。水平移動量は、内水圧 0.4MPa まで大きな変化が無かったが、0.6MPa で水平移動量が増大し、0.65MPa 時の最大移動量は曲線部中央の D5 で 3.8mm であった。

継手番号

図4.9 管の水平移動量(CASE3)

(2) 背面土圧

内水圧によるスラスト力に伴う背面土圧分布を図4.10に示す。背面土圧は管路の水平移動 量に対応しており、許容曲げ角度3°に屈曲させた EP5~EP7(継手番号5~7)で大きな背面土圧 が得られている。内圧 0.65MPa 時の最大土圧は EP7 で 30.2kPa であった。

CASE3 と CASE2 を比較すると、0.2MPa、0.4MPa ではどちらのケースもほほ同程度の土圧 が生じているが、0.6MPa では、CASE2 よりも CASE3 の方が土圧は大きい。水平移動量の増加 に伴い、管に作用する土圧も大きくなったと考えられる。

また、背面抵抗土圧の計算値は、曲線敷設の中央部で58.3kPa であり、実測値は計算値の約1/1.9 となっている。他のケースと同様に、地盤と管外面との滑動に対する摩擦抵抗や曲線部だけでな くこれに隣接する直線部の一部でもスラスト力を負担したためと考えられる。

図4.10 背面土圧分布(CASE3)

(3) 継手間隔

各継手に設置した変位計により計測した、各内水圧における継手間隔の変化を図4.11に示 す。

曲線敷設区間の許容曲げ角度 3.0°で敷設した箇所(継手番号 4~8)では、CASE_2 同様、屈曲外 側の継手の抜出し量が屈曲内側の継手の抜出し量よりも大きいが、その最大値は EP4(継手番号 4)で 1.7mm と微小である。この部分の継手の離脱防止が機能する時の設計上の抜出し長は 2mm であり、離脱防止は機能していないと考えられる。

曲線部の始点・終点(継手番号3、9)の1.5°で屈曲させた継手の屈曲外側の継手間隔については、 2mm を超えて抜け出しているが、抜出し余裕長が27mm あるので、未だ離脱防止は機能してい ない状態である。また、この部分では屈曲外側が屈曲内側よりも大きく抜け出している。

継手番号

図4.11 継手間隔(CASE3 屈曲外側)

図4.12 継手間隔(CASE3 屈曲内側)

4.3.4 まとめ

土被りを 0.2m に減じ、内水圧を 0.65MPa に昇圧し、安全率を 0.36 で試験を行った。試験結 果は内水圧が 0.4MPa を超え、0.6MPa に至ると曲線部で最大 3.8mm の水平移動を生じた。

曲線部の継手間隔は、最大 1.7mm 開いたが、離脱防止継手が離脱抵抗力を発揮するほどの抜け 出し量とはなっていない。 4. 4 CASE4(常時、安全率 0.35、内水圧繰り返し負荷)

4.4.1 目的

CASE3の試験では、内水圧負荷 0.6MPa 以上で、水平移動の増大が確認されたことから、 CASE3 と同一条件で、繰返し内水圧を負荷した時の管の挙動を確認する。

4.4.2 試験条件

CASE4の試験条件を表4.7に、安全率の計算結果を表4.6に示す。負荷内水圧は0.2MPa、0.4MPa、0.6MPa、0.65MPaの4段階で負荷した後、0.0MPaまで減圧し、再度昇圧するサイクルとした。各内水圧における保持時間は5分間とした。写真4.7および写真4.8に実験状況を示す。

設計安全率	0.36	
土被り	0.2m	
負荷内水圧	$0.0 \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.6 \rightarrow 0.65 \rightarrow 0.0 \text{MPa}$	4段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	13 サイクル	
離脱防止継手	一部機能	

表 4. 7 CASE4 の試験条件

表4.8 CASE4 の滑動に対する安全率

項目	記号	単位	曲線内の継手
呼び径	D	mm	800
設計水圧	Н	MPa	0.65
屈曲角	θ	0	3.0
土被り	H_1	m	0.200
土の単位体積重量	w	kN/m^3	16.00
土の内部摩擦	φ	0	30
曲管のL1寸法	L_1	mm	200
曲管のL2寸法	L_2	mm	200
スラスト力	P'	kN	22.4
管挿し口外径断面積	a_c	m^2	0.658
管外径	D _c	mm	960
水平方向抵抗力	R_{h}	kN	8.1
曲管の受動土圧の補正係数	F		0.65
管背面の幅	B_b	m	0.400
背面土圧	B_p	kN/m ²	58.29
地表面から管底面までの深さ	H_2	m	1.160
地表面から管頂面までの深さ	H_1	m	0.200
受働土圧係数	K _p		3.0
安全率	S		0.36

写真4. 7 実験状況 (CASE4)

写真4. 8 実験状況 (CASE4)

4.4.3 試験結果

(1) 内水圧と管の水平移動量

各サイクルにおける内水圧 0.65MPa 時の管の水平移動量を図4.13に示す。移動量は CASE3 終了時の残留変位を引継ぎ、累積値で示している。試験の結果、CASE4の繰返し内 水圧負荷による移動量の増分は 0.75mm と微小であり、5 サイクル目以降の移動量の増加は ほとんど生じていない。CASE3 と CASE4 の最大移動量の差は D5(継手番号 5)で最大でも 0.9mm である。

継手番号

図4.13 管の水平移動量(CASE4)

(2) 背面土圧

内水圧によるスラスト力に伴う背面土圧分布を図4. 14に示す。

図4.14 背面土圧分布(CASE4)

背面土圧は管路の水平移動量に対応しており、許容曲げ角度 3°に屈曲させた EP5~EP7 で大きな背面土圧が得られている。最大土圧は EP7 の 34.1kPa であった。CASE4 の 1 サイクル目では、CASE3 と土圧の差は殆どないが、CASE4 の 2 サイクル目から土圧が増加し、その後の土圧は、ほぼ一定の値で土圧は安定している。

なお、背面抵抗土圧の計算値は、CASE3 と同一であり、曲線敷設の中央部所で 58.3kPa で、 実測値は計算値の約 1/1.7 であった。他のケースと同様に、地盤と管外面との滑動に対する摩擦 抵抗や曲線部だけでなくこれに隣接する直線部の一部でもスラスト力を負担したためと考えられ る。

(3) 継手間隔

各サイクルの内水圧 0.65MPa における CASE4 の継手間隔の変化を図4.15および図4.1 6に示す。継手間隔の変化は、ほぼ一定であり変位は収束している。曲線敷設区間の許容曲げ角 度 3.0°で敷設した箇所(継手番号 4~8)では、屈曲内側の継手の抜出し量がほぼ 0 であるのに対し て、屈曲外側の継手の抜出し量は 0.6~2.3mm となった。この部分の継手の離脱防止が機能する 時の抜出し長の設計値は 2mm であるから、曲線部において部分的(継手番号 4、6)に離脱防止が 機能している状態であると推察できる。

直線部の継手の抜け出しが最大約 3mm となったが、これは、管端部に作用するスラストカの 影響によって、直線部の継手が抜け出したものと考えられる。

継手番号

図4.15 継手間隔(CASE4 屈曲外側)

4.4.4 まとめ

CASE4 では CASE3 と同じ条件(土被り 0.2m、内水圧 0.65MPa、安全率 0.36)で、13 サイクルの繰返し内水圧負荷を行った。CASE4 の繰返し内水圧負荷において、CASE3 の最終移動量からの増分は 0.8mm 程度であり、5 サイクル目以降の移動量の増加はほとんど生じなかった。土圧も同様である。ここまでの実験では、曲線部で最大 4.7mm の水平移動を生じている。

屈曲角 3°で曲げた曲線部の屈曲外側の継手間隔の変化は 2mm を超えた箇所(継手番号 4、6) があり、曲線部において離脱防止継手が部分的に機能していると推察できる。このことから本 ケースの埋設条件および内水圧では、離脱防止継手が部分的に機能した状態で、管が安定してい ると判断できる。

4. 5 CASE5(地震時、曲線部背面掘削)

4.5.1 目的

CASE5 は、地震による液状化や埋設地盤の剛性低下によって管背面の抵抗土圧が減少した 状態を想定し、離脱防止継手による水平移動の抑止機能を確認する。

4.5.2 試験条件

CASE5 は、CASE4 の条件に加えて、管の背面の土圧を低下させるため、管路曲線敷設部 の背面側の現地盤を掘削し、背面抵抗土圧を部分的に減少させた状態で内水圧を負荷した。 試験条件を表4.9に示す。負荷内水圧は0.2MPa、0.4MPa、0.6MPa、0.65MPaの4段階 で負荷し、各内水圧における保持時間を5分とした。写真4.9および写真4.10に実験 状況を示す。

設計安全率	(背面抵抗土圧なし)	
土被り	0.2m	
負荷内水圧	$0.0 \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.6 \rightarrow 0.65 \text{MPa}$	4段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	なし	
離脱防止継手	機能前	

表 4. 9 CASE5 試験条件

写真4. 9 実験状況 (CASE5)

写真4. 10 実験状況 (CASE5)

4.5.3 試験結果

(1) 負荷内水圧と管の水平移動量

負荷内水圧と管の水平移動量を図4.17に示す。

図4.17 管の水平移動量(CASE5)

移動量は CASE4 終了時の残留変位を引継ぎ、累積値で示している。試験の結果、CASE4 での最大水平移動量が D5(継手番号 5)4.7mm であったのに対し、CASE5 では 7.4mm となり、 2.8mm 増大した。また、直線部のパイプにおいては、CASE4 から殆ど変化がない。

(2) 背面土圧

内水圧によるスラスト力に伴う背面土圧分布を図4.18に示す。管背面は現地盤を掘削した状態だが、基礎材料が残っているため、土圧が発生している。背面土圧は管路の水平移動量に対応しており、許容曲げ角度3°に屈曲させた(継手番号4~8)の範囲では背面地盤を掘削したが、この箇所の土圧はEP7(継手番号7)で最大17.2kPaとなり、現地盤を掘削した影響で、CASE4の最大土圧34.9kPaから半減している。直線部においても比較的大きな土圧が発生しており、直線部においてもスラスト力の一部を負担していることが分かる。

図4.18 背面土圧分布(CASE5)

(3) 継手間隔

各継手に設置した変位計により計測した CASE5 の各内水圧における継手間隔の変化を図4. 19および図4.20に示す。CASE4 と CASE5 の継手間隔の変化を比較すると、直線部ではほ とんど変化はないが、背面地盤を掘削した曲線部では、外側の継手間隔が 0.4mm 増大している。 逆に内側では曲線の始点と終点の継手の開きが 1.3mm 増大している。掘削により背面の抵抗土圧 が低下した曲線中央部の水平移動量が増大したが、背面掘削を行っていない直線部の背面土圧が 抵抗し、管路が曲線外側に屈曲したものと推察できる。

継手番号

図4.19 継手間隔(CASE5 屈曲外側)

継手番号

図4.20 継手間隔(CASE5 屈曲内側)

4.5.4 まとめ

CASE5の実験は、地震による液状化や埋設地盤の剛性低下を想定して、曲線部外側の地盤を掘 削し、背面抵抗土圧が減少する状況を再現して管路の挙動を確認した。土被り、内水圧は CASE4 と同じ条件で曲線部の外側の地盤を掘削し内水圧を負荷した。掘削により背面抵抗土圧が低下し た曲線中央部は、水平移動量が増大したが、背面掘削を行っていない直線部はほとんど変化がな かった。継手間隔は、背面地盤を掘削した曲線部で 0.4mm 増大し、継手の開きは 2.6mm となり、 離脱防止継手が機能した状態と推察できる。背面土圧は、背面掘削を行った曲線部で CASE4 に 比べ約 1/2 に減少した。

4. 6 CASE6(地震時、曲線部背面掘削、内水圧繰返し負荷)

4.6.1 目的

CASE6 では背面地盤を掘削した CASE5 と同じ条件で繰返し内水圧を負荷し、地震動により地盤剛性が低下した状況における離脱防止継手による水平移動の抑止機能を確認する。

4.6.2 試験条件

CASE6は、CASE5と同じ埋設条件・背面掘削とし、管路曲線敷設部の背面側の地盤による 背面抵抗土圧が減少した状態で、36サイクルの繰返し内水圧負荷を行った。負荷内水圧は、 初期内水圧を 0.3MPa とし、0.4MPa、0.6MPa、0.65MPa の 3 段階で負荷した後、0.3MPa まで減圧し、再度加圧するサイクルとした。各内水圧における保持時間は5分とした。写真4. 11および写真4.12に実験状況を示す。

設計安全率	(背面抵抗土圧なし)	
土被り	0.2m	
負荷内水圧	$0.3 \rightarrow 0.4 \rightarrow 0.6 \rightarrow 0.65 \rightarrow 0.3 MPa$	3段階昇圧
内水圧保持時間	各内内水圧ステップとも5分	
繰返し負荷	36 サイクル	
離脱防止継手	機能	

表4.10 CASE6の試験条件

写真4.11 実験状況(CASE6)

写真4.12 実験状況(CASE6)

4.6.3 試験結果

(1) 負荷内水圧と管の水平移動量

負荷内水圧と管の水平移動量を図4.21に示す。移動量は CASE5 終了時の残留変位を引継ぎ、累積値で示している。

図4.21 管の水平移動量(CASE6)

試験の結果、CASE6 での1サイクル目の最大水平移動量は D5(継手番号 5)で 7.3mm、 CASE5 の 7.4mm とほぼ同一であるが、CASE6 の2サイクル目で水平移動量が増大し、最大 水平移動量は、9.3mm となった。ただし、3サイクル目以降の水平移動量の増加はほとんど なく、当該試験ケースに対する変位が収束したものと考えられる。

(2) 背面土圧

内水圧によるスラスト力に伴う背面土圧分布を図4. 22に示す。

図4. 22 背面土圧分布(CASE6)

背面土圧は管路の水平移動量に対応した分布を示している。背面地盤を掘削した許容曲げ角度 3°に屈曲させた(継手番号 4~8)の土圧は EP7(継手番号 7)で最大 21.7kPa となり、CASE5 の最 大土圧 17.2kPa よりも増加した。曲線部においては、繰り返しに伴う土圧の増加は見られないが、 直線部の土圧は繰り返しにより増加している。スラスト力を直線部でも負担していることが分か る。

(3) 継手間隔

各継手に設置した変位計により計測した、CASE6の各内水圧における継手間隔の変化を図4. 23に示す。

CASE6 の 36 サイクルの繰返し内水圧負荷において、継手間隔はほとんど変化せず、CASE5 の最終継手間隔とほぼ同じあったことから、本実験ケースにおける埋設・背面掘削条件において 変位は収束したものと推測できる。また、屈曲外側の継手間隔は、1.9~2.8mm 程度開いており、 離脱防止継手が機能する設計値に達しているため、継手間隔はほとんど増大していない。

図4.24 継手間隔(CASE6 屈曲内側)

4.6.4 まとめ

CASE6 では、CASE5 と同じ試験条件で、36 サイクルの内水圧を負荷した。最終水平移動量は CASE5 より 1.9mm 増加したが、3 サイクル目以降は、ほとんど増加せず、当該試験ケースに対 する変位が収束したものと考えられる。曲線部における背面抵抗土圧の計測値は、背面掘削を 行ったことにより CASE4 に比べ 1/2 程度に減少した。継手間隔は、離脱防止継手が機能する継 手の抜出し長の 2mm 超えて抜け出した部分があり、離脱防止継手が機能したものと推察できる。 なお、継手間隔は CASE5 からほとんど変化がなかった。 4. 7 CASE7(地震時、曲線部背面掘削+埋戻し土撤去)

4.7.1 目的

CASE7 では、最悪の条件として、地震動による地盤変状によってスラスト抵抗となる地盤 が存在しない状態、すなわち背面抵抗土圧が消失した状態で、スラストカに対する管の挙動や 離脱防止の状態を確認する。

4.7.2 試験条件

CASE7の試験条件を表4.11に示す。また、写真4.13、および写真4.14に実験状況を示す。曲線部の背面掘削の管路軸方向の長さはCASE6と同じで、現地盤だけでなく管背面と管上の基礎材料も撤去し内水圧を負荷した。内水圧は0.3MPa、0.4MPa、0.6MPa、0.65MPaの4段階で負荷した。各内水圧における保持時間は5分とした。

設計安全率	ー(背面抵抗土圧なし)	
土被り	0.2m	
負荷内水圧	$0.0{\rightarrow}0.3{\rightarrow}0.4{\rightarrow}0.6{\rightarrow}0.65\mathrm{MPa}$	4段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	なし	
離脱防止継手	機能	

表4.11 CASE7の試験条件

写真4.13 実験状況(CASE7)

写真4.14 実験状況(CASE7)

4.7.3 試験結果

(1) 負荷内水圧と管の水平移動量

負荷内水圧と管の水平移動量を図4.25に示す。

また、移動量は CASE6 終了時の残留変位を引継ぎ、累積値で示している。

図4.25 管の水平移動量(CASE7)

試験の結果、CASE7 の初期状態(0.0MPa)の水平移動量は、CASE6 の最終値 10.2mm(D6(継手 番号 6))から 2.3mm の戻りが生じており 7.9mm であった。その後、内水圧の増加に従い水平移 動量も増大し、内水圧 0.65MPa で 20.8mm となった。

(2) 継手間隔

各継手に設置した変位計により計測した CASE7 の各内水圧における継手間隔の変化を図4. 26、および図4.27に示す。曲線部の屈曲外側継手間隔の最大は 4.0mm(D6、継手番号 6)で ある。CASE6の最終継手間隔より 1.2mm 増大した。

屈曲内側では、CASE7の最大は11.9mm(D3、継手番号3)である。この箇所の継手は、屈曲角度1.5°で接合した箇所(継手番号3、9)であり、離脱防止継手が機能するまでの抜け出し余裕長が27mmである。同一箇所のCASE6の最大抜出し量は5.9mmであり、屈曲内側の継手が抜け出したことによって、曲線敷設中央部の管路が曲線内側方向に戻る動きが生じ、D4、D5(継手番号4、5)では1.3mm~1.6mm逆方向に継手間隔が変化した。

継手番号

図4.26 継手間隔(CASE7 屈曲外側)

図4.27 継手間隔(CASE7 屈曲内側)

4.7.4 まとめ

CASE7 では、曲線部の背面地盤、および管上の埋戻し土を全部撤去し管を露出させることで、 曲線部の背面抵抗土圧を消失した状態を再現し、0.65MPaの内水圧を負荷して試験を行った。

管路が露出した曲線中央部において継手間隔が最大 4mm 増大した。この状態では、差口に設置した止めネジがカラーに設置した角鋼(図3.1参照)に食い込み離脱防止が機能した状態となっており、直線部の背面土圧と曲線部の離脱防止継手のみでスラストカに抵抗した。一方、曲線の始点・終点(継手番号3、9)の継手は、屈曲内側が最大11.9mm 抜け出し、未だ離脱防止が機能するまでの抜出し余裕を持っている。

曲線中央部と、曲線の始点・終点の継手の抜け出した側は、互いに逆側となっていて、逆方向の曲げ挙動を示した。

4. 8 CASE8(地震時、管路全長背面掘削+埋戻し土撤去)

4.8.1 目的

CASE8 では、管背面の全ての地盤を撤去して、管路に大変形が生じる条件で離脱防止継手 が作用した管路の挙動を確認する。更に、合成鋼管継手の規格耐水圧の水圧を負荷し、離脱防 止継手の強度を確認する。

4.8.2 試験条件

CASE8の試験条件を表4.12に示す。管路全長の背面地盤と管上の埋戻し土の全部を撤 去した状態で、継手の規格の耐水圧である0.8MPaまで昇圧し、管路の変位と継手の状況を 確認する。なお、内水圧0.8MPaにより生じる軸力(継手の離脱力)の計算値は、526kNであ る。写真4.15、および写真4.16に実験状況を示す。

設計安全率	(背面抵抗土圧なし)	
土被り	0.0m	
負荷内水圧	$0.0 \rightarrow 0.2 \rightarrow 0.4 \rightarrow 0.6 \rightarrow 0.8 \text{MPa}$	4段階昇圧
内水圧保持時間	各内水圧ステップとも5分	
繰返し負荷	なし	
離脱防止継手	機能	

表4.12 CASE8の試験条件

写真4.15 実験状況(CASE8 実験前)

写真4.16 実験状況(CASE8 実験後)

4.8.3 試験結果

(1) 負荷内水圧と管の水平移動量

負荷内水圧と管の水平移動量を図4.28に示す。また、移動量は CASE7 終了時の残留変位 を引継ぎ、累積値で示している。

図4.28 管の水平移動量(CASE8)

試験の結果、CASE8 では 0.2MPa で変位が 23.0mm(D6(継手番号 6))となり、CASE7 の最終 水平移動量 20.8mm と大差なかったが、0.4MPa では 96.3mm と急激に水平移動が増大した。

その後、内水圧の昇圧と共に水平移動量が増大し、供試管継手の規格の内圧強さ 0.8MPa で、 153.5mm まで水平移動が増大した。

(2) 継手間隔

各継手に設置した変位計により計測した CASE8 の各内水圧における継手間隔の変化を図4. 29および図4.30に示す。

CASE8 では、曲線部の始点・終点の屈曲角 1.5°で接合した箇所(継手番号 3、9)の継手間隔が 増大した。傾向は CASE7 では曲線内側の継手が開いたのに対して、CASE8 では、曲線外側、内 側共に 13~22mm 抜け出した。この部分の継手は離脱防止継手が機能するまでの抜出し余裕長が 27mm であるので、この状態では、この箇所の離脱防止継手は機能していない。

一方、曲線中央部の屈曲角 3.0°で接合した継手(継手番号 4~8)では、曲線外側の継手間隔が 6.9~8.7mm 増大し、離脱防止が機能した状態である。曲線中央部の離脱防止継手は、止めネジがカラーの角鋼に接触、食い込むことで離脱抵抗力を発揮する。曲線内側の継手間隔の変化は-1.7mm 程度で CASE7 と大差がない。

このことから、曲線の始点・終点の継手が抜け出したことによって、曲線中央部においても外 側に大きく水平移動したことがわかる。

図4.29 継手間隔(CASE8 屈曲外側)

図4.30 継手間隔(CASE8 屈曲内側)

4.8.4 まとめ

CASE8 では、試験管路全長に渡って背面地盤、及び管上の埋戻し土の全部を撤去し、管を露出 させて 0.8MPa の内水圧を負荷して試験を行った。管路の水平移動量は、曲線中央部において 153.5mm と大きな変位が生じ、直線部においても曲線の外側に膨らむ方向に水平移動を生じた。

このとき、曲線中央部の継手は離脱防止が機能し、継手の抜け出しは制限された。また、曲線 部始点・終点の継手は、当初の抜出し余裕が 27mm であったが、曲線中央部に作用したスラスト 力が離脱防止継手を介して伝達されることで、最大 22mm 抜け出した。

4.9 考察

4. 9. 1 CASE1~2

滑動に対する安全率を CASE1 では 0.98、CASE2 では 0.55 として試験を行った結果、管路の 水平移動量、継手間隔の変化は微小であった。継手間隔の変化は 2mm 以下であり、継手の離脱 防止が機能するまでには至らなかった。発生した背面土圧は、CASE1、CASE2 共に「技術書パ イプライン」に記載された計算方法によって算出した値の 1/3~1/2.5 と小さい値であった。

曲げ配管工法指針(案)で規定された安全率 1.5 を下回る厳しい条件で試験を行った結果、管路の 変位は微小であったことから、同指針の考え方を適用すれば、十分に安全な曲げ配管設計が可能 であることを確認した。

4. 9. 2 CASE3~7

CASE3、CASE4では安全率を 0.36 とし、13 サイクルの繰返し内水圧を負荷した。曲線部での継手間隔は、設計上、離脱防止継手が機能する継手の抜出し長 2.0mm を超えた部分があり、離脱防止継手が機能したものと推察できる。このことから本ケースの埋設条件および内水圧においては、離脱防止継手が部分的に機能した状態で、水平移動が収束したと判断できる。

離脱防止機能を有する合成鋼管を用いて曲げ配管施工を行うことによって、継手の抜け出しが制限され、滑動を抑止できることを確認した。

CASE5、CASE6 で、曲線部背面の現地盤を掘削し、36 サイクルの繰返し内水圧を負荷した。 3 サイクル目以降は、ほとんど変位が増大せず当該試験ケースに対する変位が収束したと判断で きた。CASE1 から CASE6 までの曲線部の外側継手間隔の変化を表4.13および図4.31に 示す。

CASE	滑動	サイクル数	最大水圧	JO-4	JO-5	JO-6	JO-7	JO-8
CASE	安全率	(回)	(MPa)	(mm)	(mm)	(mm)	(mm)	(mm)
1	0.95	1	0.50	1.00	0.39	0.26	0.27	0.53
2	0.54	1	0.60	1.31	0.42	0.47	0.39	0.74
3	0.35	1	0.65	1.61	0.58	1.63	0.76	1.73
4	0.35	13	0.65	1.68	0.64	2.24	0.91	2.11
5	北田田町	1	0.65	1.79	0.87	2.58	1.33	2.25
6	月山1	36	0.65	1.89	1.01	2.81	1.71	2.55

表4.13 CASE1~CASE6の外側継手間隔の変化

※JO-4からJO-8までの変位の値は、各CASEの最大水圧時の値とした。 ※滑動安全率は、許容曲げ角度(3°)で布設した管路のスラスト力に対する安全率。 CASE4で継手番号6が設計上の離脱防止継手機能が機能する位置(継手間隔の開き2mm)まで抜け出したと推察される。その後、CASE5、CASE6では、2mmを超えて抜け出している。これは背面地盤の掘削によって、背面抵抗土圧によるスラスト抵抗が減少し、スラストカのほとんどを離脱防止継手が負担した結果、差ロに設置された止めネジが、カラーに設置された角鋼に食い込み離脱防止抵抗力を発揮したことによるものと推察できる。

図4.31 CASE1~CASE6の管路屈曲外側継手間隔の変化

図4.32に CASE1 から CASE6 までの水平移動量と背面土圧の変化を示す。CASE1~CASE6 まで、実験ケースが進むにつれて、水平移動量は少しずつ増大しているが、背面抵抗土圧の変化 をみると、背面掘削を行った CASE5 で 1/2 程度に急激している。CASE3 以降の負荷内水圧は同 ーでスラストカも同一であるから、背面土圧の減少分は離脱防止継手と直線部の背面土圧により、 スラストカに抵抗したと判断できる。

図4.32 各実験ケースの背面土圧と曲線部の最大水平移動量

CASE3以降の実験でのスラスト力による継手の離脱力の計算値は、427.7kNとなる。一方、石 井将幸らが実施した実験⁴⁾によって確認された合成鋼管の曲線接合部における離脱防止継手の 離脱強度は約700kN超であるので、離脱防止抵抗力は十分な余裕がある。地震等によって背面抵 抗土圧が減少した場合でも、継手が離脱することなく水密性が確保できることを確認した。

CASE7 では、曲線部の背面地盤、及び管上の埋戻し土を全部撤去し管を露出させることで、曲線部の背面抵抗土圧を消失した状態を再現し、0.65MPaの内水圧を負荷した。

管路の継手は、露出した曲線中央部において継手間隔が最大 4mm 増大し、離脱防止が機能し た状態である。一方、曲線の始点・終点(継手番号 3、9)の継手は、屈曲内側が最大 11.9mm 抜け 出し、離脱防止が機能するまでの抜出し余裕を持っている。曲線中央部と曲線の始点・終点では、 継手が大きく抜け出した側は逆側であり、逆方向に曲げが生じた。これは、水平抵抗土圧を消失 させる範囲を曲線部に限定させた結果、離脱防止継手を介してスラスト力が伝達された直線部の 背面地盤が抵抗することで、管路全体の水平移動が抑制された結果であると考えられる。

このことから、曲線部の地盤剛性が部分的に極端に低下し、背面抵抗土圧を消失した場合でも、 曲線部の離脱防止継手が機能し、隣接する直線部の管路にスラスト力が伝達され、直線部でスラ スト力に対抗することで、水平移動量が抑制されることが確認できた。また、離脱防止機能に よって一定以上の継手の抜け出しが制限され、水密性を確保できることを確認した。

4.9.3 CASE8

CASE8 では、試験管路全長に渡って背面地盤、及び管上の埋戻し土の全部を撤去し、管を露出 させて 0.8MPa の内水圧を負荷した。管路の水平移動量は、曲線中央部において 153.5mm と大 きな変位が生じ、直線部においても曲線の外側に膨らむ方向に水平移動を生じた。

以前に行った CASE7 でスラスト力が伝達された直線部の背面地盤が抵抗することで、管路全体の水平移動が抑制されたが、CASE8 で広範囲に渡って水平抵抗土圧を消失させた場合は、直線部も水平移動するために管路全体として移動量が増大した。このことから、スラスト力を受ける曲線部の地盤剛性が低下する範囲が限定的であれば、離脱防止継手の機能によって隣接する管路が水平移動を抑制させる効果を期待できるが、地盤剛性が低下する範囲が広範囲である場合は、スラスト力によって管路が大きく水平移動することが確認された。

継手間隔は、曲線中央部の継手は離脱防止が機能し継手の抜け出しが制限された。また、曲線 部始点・終点の継手は、当初の抜出し余裕が27mmであったが、曲線中央部に作用したスラスト 力が離脱防止継手を介して伝達されることで、最大22mm抜け出した。このことから、曲線中央 部のスラスト力が離脱防止継手の離脱抵抗力によって、隣接する継手に伝達されたと考えられる。

隣接する継手に抜出し余裕長がある場合はその継手を引き出し、管軸方向変位を近傍管路に分 散させることで、曲線部の継手の一定以上の継手の抜け出しが制限され、水密性を確保する鎖構 造管路の機能が発揮されたと考えられる。

離脱防止継手の強度は、背面抵抗土圧が全て消失した状態で、継手の耐水圧の内水圧を負荷した場合でも破壊することがなく、十分な強度を有していることが確認された。

5. まとめ

呼び径 800、内圧強さ 0.8MPa、継手の許容曲げ角度 3°、継手の離脱防止機能を有する合成鋼 管 12 本を用いて、曲線敷設管路を地中に埋設し内水圧を負荷する実験を行った。その結果、以下 の事項を確認した。

5. 1 常時のスラストカに対する曲げ配管設計の検証

①合成鋼管による曲線敷設に対し曲げ配管工法指針(案)の考え方を適用すれば、十分に安全な曲 げ配管設計が可能であった。

②曲げ配管工法指針(案)の考え方を以下にまとめる。

- ・曲線部のスラストカに対する安全率は1.5以上とする。
- ・曲線部に適用する継手の屈曲角は、設計曲げ角度以内とする。
- ・曲線部は均等な長さの管を使い、均等な継手屈曲角で設定円弧上に敷設する。なお、曲線区間の始点と終点の継手は、1/2の屈曲角度とする。
- ・曲線部のスラストカに対する検討は、継手1箇所につき前後の管長の1/2 ずつを背面幅 と考え、スラストブロックを設けない曲管と同様に検討する。
- ③離脱防止継手を用いて一体管路が形成できるので、曲線部のスラスト力に対する安全率 1.5 を 下回る場合であっても、直線部に作用する土圧の拘束力を利用して、スラストブロック等の構造物 を省略できた。

5.2 地震動による地盤の剛性低下に対する離脱防止継手機能の検証

- ①地震動により背面抵抗土圧が低下、または消失した場合でも、離脱防止継手が継手の抜出しを 抑制するため、スラストブロックが不要となるパイプラインの構築が可能であった。
- ②離脱防止継手は、一定以上の継手の抜け出しが制限され、漏水を防止する鎖構造管路としての 機能を有していた。
- ③広範囲に地盤剛性が低下する場合は、直線部の離脱防止継手に抜出し余裕長を持たせて敷設し たため管路が大きく水平移動した。

5.3 スラストカに対する離脱防止継手性能の検証

①継手の規格耐水圧と等しい内水圧を負荷しても漏水はなかった。

②背面抵抗土圧が消失し管路が大きく水平移動しても、離脱防止継手は内水圧によって生じる離 脱力に対して十分な強度を有しており、継手からの漏水を防止できた。 引用文献

1)株式会社クボタ、栗本化成工業株式会社、積水化学工業株式会社、日本ホーバス株式会社、内外エンジニアリング株式会社、(独)農研機構農村工学研究所施設資源部土質研究室:(成果報告書)可とう性継手による曲げ配管工法の研究開発、pp1、2016.7.21

2) 独立行政法人 農業・食品産業技術総合研究機構、農村工学研究所 施設資源部 土質研究室:ダクタイル鉄 管による曲線敷設の適用研究 -高圧管路における検証実験報告書-、pp74、2008.12

3)小笠原一雄:膨張性コンクリートを利用したコンクリートライニング鋼管,日本工業新聞社発行「配管」,昭和46 年8月号、pp47~55、1971.8

4) 石井将幸、野中資博、坂村博、秋元昌哲、井川秀樹、合成鋼管用離脱防止継手の試作とその性能照査指標に関する検討(農業農村工学会論文集 IDRE Journal No. 301 (84-1), pp. I_15- I_21 (2016.2))

参考資料1 土質試験結果

1土粒子の密度試験(JIS A 1202)
 2土の粒含水比試験(JIS A 1203)
 3土の粒度試験(JIS A 1204)
 ④突き固めによる土の締固め試験(JIS A 1210)
 ⑤土の圧密排水(CD) 三軸圧縮試験(JGS 0524)

JGS 0051	JGS 0051 地盤材料の工学的分類										
調査件名	調査件名										
					試験者	山田	吉広				
試 料 番 号	(深さ)	霞ヶ浦砂									
石 分(75mm以上) %	0.0									
礫 分(2~75mm)	%	15.8									
砂 分(0.075~2mm) %	74.4									
細粒分(0.075mm未満) %	9.8									
シルト分(0.005~0.07	5mm) %	3.0									
粘土分(0.005mm未)	茜) %	6.8									
最大粒径	mm	9.5									
均等係数Uc		7									
液性限界 W_L	%										
塑 性 限 界 W _P	%										
塑性指数 Ip											
地 盤 材 料 の 分 類 名		細粒分混じり 礫質砂									
分類記号		(SG-F)									
凡例記号		•									

JIS A 1202 JGS 0111	土米	立子の密度	度試験(枪	愈定,測知	宦)			
調查件名					試験	年月日	平成27年	12月9日
					試	験 者	田山	吉広
試料番号(深さ)			霞ヶ浦砂					
ピクノメーター No.		38	90	SS				
ピクノメーターの質量	m _f g	63.113	88.308	84.186				
(蒸留水+と°クノメーター) 質量	m _a ' g	282.322	291.694	284.013				
m _a 'をはかったときの蒸留水の温度	<i>т</i> ′ °С	16.8	16.8	16.8				
T'℃における 蒸留水の密度	ρ_w (T') g/cm ³	0.99881	0.99881	0.99881				
(試料+蒸留水+ピクノメーター)質量	m _b g	307.856	318.566	313.792				
m _b をはかったときの内容物の温度	T °C	19.7	19.3	19.4				
T℃における蒸留水の密度	ρ_w (T) g/cm ³	0.99826	0.99834	0.99832				
温度の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量	m _a g	282.201	291.598	283.915				
容	器 No.	131	10	17				
試料の(炉乾燥試料+容	器)質量g	241.261	222.268	269.343				
炉乾燥質量 容 器 質	量 g	200.537	179.398	221.914				
m _s	g	40.724	42.870	47.429				
土粒子の密度	ρ_s g/cm ³	2.698	2.691	2.698				
平 均 值	ρ_s g/cm ³		2.696					
試料番号(深さ)							T	
ピクノメーター No.								
ピクノメーターの質量	m _f g							
(蒸留水+と。りノメーター) 質量	m _a 'g							
ma'をはかったときの蒸留水の温度	<i>т</i> ′°С							
T'℃における蒸留水の密度	ρ_w (T') g/cm ³							
(試料+蒸留水+ピクノメーター)質量	m _b g							
m _b をはかったときの内容物の温度	<i>T</i> ℃							
T℃における蒸留水の密度	ρ_w (T) g/cm ³							
温度の蒸留水を満たしたときの (蒸留水+ピクノメーター)質量	m _a g							
容	器 No.							
試料の(炉乾燥試料+容	器)質量g				ļ			
^{炉 轧 傑 貨 重} 容 器 質	量 g							
<i>m</i> _s	g							
土 粒 子 の 密 度	ρ_s g/cm ³							
平 均 値 <u> 特記事項</u>	ρ_s g/cm ³							
The the the second seco							(T)	

 $m_{a} = \frac{\rho_{w}(T)}{\rho_{w}(T')} \times (m_{a}' - m_{f}) + m_{f}$ $\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$

JIS JGS	A 1204 S 0131		土の	粒度試	験	(粒征	圣加	積曲	自線)			
調査件名	3								試験	年月日	平成27年	12月25日
									試	険 者	山田	吉広
試料番号 (深さ)	霞ヶ	- 浦砂									霞ヶ浦砂	
	粒 径 mm	通過質量百分率%	粒 径mm	通過質量百分率%	粗	硝	×	分		%	0.0	
	75		75		中	硝	× ×	分		%	5.3	
	53		53		細	硝	××<	分		%	10.5	
\$	37.5		37.5		粗	砂	>	分		%	10.2	
	26.5		26.5		中	矵	>	分		%	51.3	
る	19.0		19.0		細	矵	>	分		%	12.8	
	9.5	100.0	9.5		シ	ル	4	分		%	3.0	
ι.	4.75	94.7	4.75		粘	t	-	分		%	6.8	
分	2.00	84.2	2.00		2mm	ふるい	通過	質量百	分率	%	84.2	
	0.850	74.0	0.850		425µ	mふるし	、通過	質量百	i分率	%	52.6	
析	0.425	52.6	0.425		75µn	nふるし	通過	質量百	ī分率	%	9.8	
	0.250	22.6	0.250		最	大	粒	径		mm	9.5	
	0.106	10.9	0.106		60	%	粒	径	D ₆₀	mm	0.573	
	0.075	9.8	0.075		50	%	粒	径	D ₅₀	mm	0.410	
	0.0547	8.7			30	%	粒	径	D ₃₀	mm	0.293	
247	0.0387	8.7			10	%	粒	径	$D_{10} \\$	mm	0.081	
<i>i</i>)C	0.0246	7.1			均	等	係	数	Uc		7	
降	0.0142	7.1			曲	率	係	数	U _c '		1.9	
	0.0101	6.9			±	粒子	の習	密度	ρ_s	g/cm ³	2.696	
分	0.0071	6.8									ヘキサメタりん酸ナ	
ᅣ	0.0036	6.8									10ml	
171	0.0015	5.6										

	JIS A J GS	A 12	21(711)		突	固めによ	性)					
	調査	£件:	名							試験年月日	王 平	成27年12月	9日
試	斗番-	号	(深	さ)			霞ヶ	·浦砂		試験ネ	Š	山田 吉広	
弒	験	;	方		法	А	a	土 質	名 称				
試 料	の	準(備	方	法	乾燥法,	湿湿法	ランマー質	量 kg	2.5	土粒子の密度	ρ_s g/cm ³	2.696
試 料	Ø	使	用	方	法	繰返し法,	非繰返し法	落 下 高	さ cm	30	試料調製前の最大	c粒径 mm	
<u>م</u> ــــــ	L 試彩	分耶	议後	w ₀	%		-	突固め回	可数回/層	25	Frank	内径 cm	10.00
古 小 1	乾燉	東処理	世後	w 1	%		-	突固め層	雪数 層	3		高さ ¹⁾ cm	12.75
測	定	N	lo.			1	2	3	4	5	6	7	8
平 均	含水	比	и	,	%	6.2	8.3	9.9	12.3	13.4	14.7	16.1	17.3
乾燥	密月	ξρ	d	g/c	m ³	1.605	1.622	1.641	1.666	1.671	1.679	1.678	1.658

 $\rho_{dsat} = \frac{\rho_w}{\rho_w / \rho_s + w/100}$

JGS 0520

土の三軸試験の供試体作製・設置

調査件名離脱防止機能付き合成鋼管を用いた曲線配管実証実験 試験年月日

試料番号(深さ) 霞ヶ浦砂D値90%

試 験 者

供討	、体を	用いる	5試験の)基準番	号と名称	JGS0524	土の圧密・排水	k(CD)三軸圧縮試験			
弒	料	の	状	態		再構成	Ż	土粒子の密度	ρ_s^{3} g/cm ³	2.696	
供	試	体(の作	製 ²⁾		突固め	5		4)		
土	侱	Ĩ	名	称		砂			4)		
	住	ŕ	試	体	No.		1	2	3		
初							4.995	4.990	5.000		
		直径			сm		4.990	5.000	4.995		
						5.000		5.000	5.005		
	平	均	直	径	D i	cm	4.995	4.997	5.000		
							10.010	9.990	9.995		
期		高	さ			сm	10.005	9.995	9.990		
						10.010	10.010 9.990 9.990				
	平	均	高	さ	<i>Н</i> і	cm	10.008	9.992	9.992		
	体			積	V i	cm ³	196.11	195.96	196.19		
	含		水	比	Wi	%	15.4	15.9	15.7		
状	質			量	mi	g	343.10	343.50	343.40		
	湿	潤	密	度	ρti ³⁾	g/cm^3	1.750	1.753	1.750		
	乾	燥	密	度	ρdi ³⁾	g/cm^3	1.515	1.513	1.513		
	間		隙	比	<i>e</i> i ³⁾		0.780	0.782	0.782		
	飽		和	度	S ri ³⁾	%	53.2	54.8	54.1		
態	相	対	密	度	D ri ³⁾	%					
			軸変位	量の測定	方法			外部変位計により測	定		
設	設量	置時の	の軸変	位量		cm	0.000	0.000	0.000		
置	飽利	口過程	の軸変	5位量		cm	0.000	0.000	0.000		
65	軸	変	位	量	⊿ <i>H</i> i ⁵⁾	сm	0.000	0.000	0.000		
記和			体積変	化量の測]定方法		計算				
過	設置	置時の	体積刻	5化量		c m ³	0.00	0.00	0.00		
程	飽和	過程	の体積変	を化量		c m ³	0.00	0.00	0.00		
	体	積	変化	」 量	⊿ <i>V</i> i ⁵⁾	c m ³	0.00	0.00	0.00		
圧	高			さ	H 0	сm	10.01	9.99	9.99		
密	直			径	D 0	cm	5.00	5.00	5.00		
前	体			積	V 0	cm ³	196.11	195.96	196.19		
試	乾	燥	密	度	ρd0 ³⁾	g/cm ³	1.515	1.513	1.513		
験前	間		隙	比	<i>e</i> ₀ ³⁾		0.780	0.782	0.782		
则	相	対	密	度	D r0 ³⁾	%					
恒	容		器	No.			33	29	3 3		
乾	(炉車	(炉乾燥供試体+容器)質量				g	468.27	465.73	467.90		
燥	容	容器質				g	171.07	169.31	171.07		
後	炉	乾	燥留	〔 量	ms	g	297.20	296.42	296.83		

特記事項

1) 試料の採取方法,試料の状態(塊状,凍結,ときほぐされた)等を記載する。 2)トリミング法,負圧法の種別,凍結試料の場合は解凍方法等を記載する。

3)必要に応じて記載する。

4)必要に応じて粘性土の場合は液性限界,塑性限界,砂質土の場合は最小乾燥密度, 最大乾燥密度等を記載する。

5)設置時の変化と飽和過程およびB値測定過程での変化を合わせる。

 $[1 \text{ kN/m}^2 \Rightarrow 0.0102 \text{ kgf/cm}^2]$

JGS

土の三軸圧縮試験 [CU, CU, CD] (^{圧密前, 圧密後})

調査件名 離脱防止機能付き合成鋼管を用いた曲線配管実証実験 試験年月日

試料番号(深さ) 霞ヶ浦砂D値90%

0524

試 験 者

試料の状態1)		再構成	最小乾燥密度 ρdmin g/cm3 ⁴⁾		
供試体の作製方法 ²⁾		突固め	最大乾燥密度 ρ dmax g/cm3 ⁴⁾		
土 質 名 称		砂		再 弄排 业	
土*	立子の密度 ρ_s^{3} g/cm ³	2.696	上密中の排水方法	[14] [14] 79F 7/5	
供 試 体 No.		1	2	3	
試験条件	セル 圧 $\sigma_c kN/m^2$	230	260	320	
	背 圧 u b kN/m ²	200	200	200	
	压密応力 σ' kN/m ²	3 0	6 0	120	
圧密	高 さ H_{θ} cm	10.008	9.992	9.992	
	直 径 D ₀ cm	4.995	4.997	5.000	
前	間 隙 比 e ³⁾	0.780	0.782	0.782	
圧	圧密時間 t _c min	6 0	6 0	6 0	
	体積変化量 ⊿V _c cm ³	0.50	1.12	2.87	
	軸 変 位 量 △ <i>H</i> c cm	0.007	0.014	0.052	
	体 積 V _c cm ³	195.61	194.84	193.32	
	高 さ H _c cm	10.001	9.978	9.940	
後	炉乾燥質量 ms g	297.20	296.42	296.83	
	乾燥密度 ρ _{dc} g/cm ³	1.519	1.521	1.535	
	間 隙 比 e ³⁾	0.775	0.773	0.756	
間隙圧係数B	等方応力増加量 $\Delta \sigma kN/m^2$	10.0	20.0	20.0	
	間隙水圧増加量 △u kN/m ²	9.9	19.4	19.2	
	測定で要した時間 min	1	1	1	
	B 值	0.99	0.97	0.96	

JGS 0524

土の三軸圧縮試験 [UU,CU,CU,CD] (応カーひずみ曲線)

調査件名 離脱防止機能付き合成鋼管を用いた曲線配管実証実験 試験年月日

JGS 0524

三軸圧縮試験 [UU, CU, CU, CD](強度特性)

調査件名 離脱防止機能付き合成鋼管を用いた曲線配管実証実験 試験年月日

試料番号 霞ヶ浦砂D値90%

試験者

強度定数	全	応	カ	有 効	応 力
応力範囲	$c_{d} kN/m^{2}$	ϕ d°	$ an\phi_d$	c' kN/m ²	φ'°
正規圧密領域	0	34.7	0.692		
過圧密領域					

調査件名		整理年月日	平成27年12月25日
		整理担当者	山田吉広
試料番号(深さ)	霞ヶ浦砂		
湿潤密度ρ _t g/cm ³	-		
- 乾燥密度ρ _d g/cm ³	-		
土粒子の密度 p _s g/cm ³	2.696		
自然含水比 W _n %	-		
間 隙 比 e	-		
飽和度S _r %	-		
石 分 (75mm以上) %	0.0		
推礫分 ¹⁾ (2~75mm) %	15.8		
砂 分 ¹⁾ (0.075~2mm) %	74.4		
シルト分 ¹⁾ (0.005~0.075mm)%	3.0		
粘土分 ¹⁾ (0.005mm未満) %	6.8		
最大粒径 mm	9.5		
均等係数Uc	7		
£			
液性限界 W _L %			
塑性限界 W _p %			
塑性指数Ip			
地盤材料の 分 類 名	細粒分混じり礫 質砂		
分類記号	(SG-F)		
試験方法			
E 圧 縮 指 数 C _C			
圧密降伏応力 P _c kN/m ²			
2			
_ 一軸圧縮強さ q _u kN/m ²			
±			
E			
a			
試験条件			
全 応 力 c kN/m ²			
φ°			
f 有効応力 c' kN/m ²			
φ' °			

土 質 試 験 結 果 一 覧 表 (基礎地盤)

L

[1kN/m²≒0.0102kgf/cm²]

<u> </u>	貝武厥茄朱	見公、	17 17)	
調査件名				整理年月日	平成27年12月25日
				整理担当者	山田吉広
試 料 番 号(深 さ)	霞ヶ浦砂				
湿潤密度 pt g/cm ³	-				
乾燥密度 pd g/cm ³	-				
土粒子の密度 p _s g/cm ³	2.696				
目然含水比 W _n %	-				
	-				
$\frac{1}{10} \frac{1}{7} \frac{1}{7} \frac{1}{10} 1$	0.0				
$\frac{1}{2}$ ($\frac{1}{2}$))) ($\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$))) ($\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$))) ($\frac{1}{2}$ ($\frac{1}{2}$)) ($\frac{1}{2}$ ($\frac{1}{2}$))) ($\frac{1}{2}$))) ($\frac{1}{2}$ ($\frac{1}{2}$))) ($\frac{1}{$	15.8				
砂 $5^{(0.0/5~2mm)}$ %	74.4				
メ++ 公 ¹⁾ (0,005~0.075mm)%	6.8				
最大粒径 mm	9.5				
均等係数Uc	7				
度				-	
〕液性限界W _L %	-				
型性限界 Wp %					
塑性指数Ip					
┃ 特 ₩					
地盤材料の 分 分類名	細粒分混じり礫 質砂				
分類記号	(SG-F)				
流 験 方 法	A-a				
固 最大乾燥密度 ρ _{dmax} g/cm ³	1.680				
の 最適含水比 W _{opt} %	15.3				
試 験 方法					
C 膨 張 比 r _e %					
B 貫入試験後含水比 W ₂ %					
平均 CBR %					
R %修正CBR %					
	_				
コ 突 固 め 回 数 回/層			to the second second		
· コーン指数 qc kN/m ²				_	
¤ コーン 指数 qc kN/m ⁴					

JIS A 1210	SA1210 安固めによる土の締固め試験(測定)									
調查件名			試験年月日	平成27年12月9日						
試料番号 (深さ)		山田 吉広								
試 験 方 法	A-a	土質名称								
試料の準備方法	乾燥法, 湿潤法	ランマー質量 kg	2.5	内径 cm 10.00						
試料の使用方法	繰返し法, 非繰返し法	落下高さ cm	30 モ 1	高さ ¹⁾ cm 12.75						
含試料分取後 w ₀ %	-	突固め回数 回/層	25 ^N	容 量 V cm ³ 1001						
示 比乾燥処理後 w ₁ %	-	突固め層数 層	3	質量m ²⁾ g 3825						
測 定 No.	1	2	3	4						
(試料+モールド)質量 m ₂ ²⁾ g	5531.65	5583.73	5630.56	5698.61						
湿 潤 密 度 ρ_t g/cm ³	1.704	1.756	1.803	1.871						
平均含水比 w %	6.2	8.3	9.9	12.3						
乾燥密度 pd g/cm ³	1.605	1.622	1.641	1.666						
容器 No.	106	46	125	131						
m _a g	52.81	54.62	61.47	59.64						
含 <i>m</i> b g	51.53	52.82	59.33	56.72						
<i>m</i> _c g	30.55	31.21	37.76	33.03						
w %	6.1	8.3	9.9	12.3						
容器 No.	81	96	22	29						
m _a g	47.82	52.64	50.91	50.93						
比 <i>m</i> b g	46.65	50.90	48.85	48.33						
<i>m</i> _c g	27.95	29.68	27.83	27.23						
w %	6.3	8.2	9.8	12.3						
測 定 No.	5	6 7		8						
(試料+モールド)質量 m ₂ ²⁾ g	5723.69	5754.54	5776.41	5773.12						
湿 潤 密 度 ρ_1 g/cm ³	1.896	1.927	1.949	1.945						
平均含水比 w %	13.4	14.7	16.1							
乾燥密度ρ _d g/cm ³	1.671	1.679	1.678	1.658						
容器 No.	38	126	12							
m _a g	62.96	58.99	58.53	49.67						
含 <i>m</i> b g	59.52	55.74	54.32	45.29						
<i>т</i> _с g	34.03	33.95	28.31	20.11						
w %	13.5	14.9	16.2	17.4						
容器 No.	95	13	186							
m _a g	58.78	50.13	47.90	48.54						
比 <i>m</i> b g	55.78	47.39	44.05							
<i>m</i> _c g	33.33	28.59	20.13	20.71						
w %	13.4	14.6	16.1	17.3						

特記事項

1) 内径 15 cm のモールドの場合はスペー

サーディスクの高さを差引く。

2) モールドの質量は底板を含む。

 $\rho_d = \frac{\rho_t}{1 + w/100}$

JIS A	1204
JGS	0131

土の粒度試験(2mmふるい通過分分析)

調査件名

試験年月日 平成27年12月25日

試料 さ)	試料番号(深 霞ヶ浦砂					試 験 者 山田	吉広			
	1	2 m	mふるい	通過試料	ŀ	土粒子の密度 p _s g/cm ³	2.696			
	容器№		12	46	131	塑 性 指 数 I _p	-			
含	m _a	g	52.99	65.47	60.93	分散装置の容器№	-			
74	m _b	g	52.88	65.31	60.81	メスシリンダー№	12			
水	m _c	g	28.31	31.21	33.03	浮 ひょう №	76			
比	\mathbf{w}_1	%	0.4	0.5	0.4	メニスカス補正値 C _m	0.001			
	平均值 w_1	%		0.4		使用した分散剤、溶液濃度、溶液添加量				
(沈隆	补分析用 試	₿Ⅰ	-容器)質量	g	380.92	~キサメタりん酸ナトリウムの飽和溶液 10ml				
容器	(№ В)質	量		g	287.88	全試料の炉乾燥試料質量に対する m m 。」	0.941			
沈降分析用試料質量 m1 g				g	93.04	2mmふるい通過試料の炉乾燥質量の比 0.8				
沈隆	経分析用試 の 数 慢 質	中	$m_{1s}=\frac{m}{1+\omega_1}$	/ <u>100</u> g	92.62	$M = \frac{V}{m_{1s}} \frac{\rho_s}{\rho - \rho_s} \rho \times 100$	1716			

沈降分析

Ċ	D	2	3	4	(5)	6	\overline{O}	8	9	10
測定時間	経過時間	浮ひょう	の読み	測定時	有効深さ		粒径d	補正係数	加積通過率P	通過質量百分率P(d)
	t	小数部分		の水温	L	$\sqrt{\frac{30 \eta}{g_*(\rho_* - \rho_*)}}$	$ (6) \times \sqrt{\frac{L}{t}} $	F	M×(③ +F)	$\frac{m_{s}-m_{os}}{m_{s}}\times P$
	mın	r	$r+C_m$	Ъ	mm		mm		%	%
8:10										
8:11	1	0.0040	0.0050	20	165.6	0.0042	0.0547	0.0010	10.3	8.7
8:12	2	0.0040	0.0050	"	165.6	"	0.0387	"	10.3	8.7
8:15	5	0.0029	0.0039	"	167.9	"	0.0246	"	8.4	7.1
8:25	15	0.0029	0.0039	"	167.9	"	0.0142	"	8.4	7.1
8:40	30	0.0028	0.0038	"	168.1	"	0.0101	"	8.2	6.9
9:10	60	0.0027	0.0037	"	168.3	"	0.0071	"	8.1	6.8
12:10	240	0.0027	0.0037	"	168.3	"	0.0036	"	8.1	6.8
8:10	1440	0.0019	0.0029	"	170.0	"	0.0015	"	6.7	5.6

ふるい分析(沈降分析を行う場合)

ふるい	容器№	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量	加積残留率	加積通過率P	通過質量百分率P(d)
				m (d)	Σm (d)	$\frac{\sum m(d)}{m} \times 100$	$\left(1-\frac{\sum m(d)}{m_{ir}}\right) \times 100$	$\frac{m_s - m_{0s}}{m_s} \times P$
μm		g	g	g	g	%	%	%
850	-	-	-	11.17	11.17	12.1	87.9	74.0
425	-	-	-	23.57	34.74	37.5	62.5	52.6
250	-	-	-	32.96	67.70	73.1	26.9	22.6
106	-	-	-	12.92	80.62	87.0	13.0	10.9
75		-	-	1.22	81.84	88.4	11.6	9.8

特記事項

JIS	A	1204
JGS	5	0131

試料番号(深さ)

土の粒度試験(ふるい分析)

試験年月日

試験者

調査件名

霞ヶ浦砂

山田 吉広

平成27年12月25日

			全 試	料		2mmふるい通過試料(沈降分析を行わない場合))
	容 器	№	12	46	131	容器№	
含	ma	g	52.99	65.47	60.93	含 ma g	
74	mb	g	52.88	65.31	60.81	mb g	
Ж	mc	g	28.31	31.21	33.03	水 mc g	
比	W	%	0.4	0.5	0.4	比 W %	
	平均值 \	N %		0.4		平均值 W %	
(全試料+容器)質量 g				g	745.46	(2mmふるい通過質量+容器)質量 g -	
容器	≩(Nº)	質量	g	223.72	容器(№))質量 g -	
全	試 料	質:	量 m	g	521.74	2mmふるい通過試料の質量 m ₁ g -	
全試料の炉乾燥質量 $m_{s} = \frac{m}{1 + \omega / 100} g$			<u>m</u> p / 100 g	519	2mmふるい通過 試料の炉乾燥質量 $m_{11} = \frac{m_{11}}{1 + \omega / 100}$ 437		
	> 7 / , T#	571 / \	(試料+容器)質:	量 g	306.22	全試料の炉乾燥質量に対する	
2mn	いかるい残	笛 分 試料	容器(№))質	量 g	223.72	2mmふるい通過試料の炉乾燥質量 <u>m, - m,</u> 0.841	
		u#v•f*T	炉乾燥質量	m _{0s} g	82.50	比	

2mmふるい残留分m_{0s}のふるい分析

ふるい	容器№	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量	加積残留率	通過質量百分率P(d)
				m (d)	Σm (d)	$\frac{\sum m(d)}{m} \times 100$	$\left(1-\frac{\sum m(d)}{m}\right)\times 100$
mm		g	g	g	g	%	%
75	-	-	-		0.00	0.0	100.0
53	-	-	-		0.00	0.0	100.0
37.5	-	-	-		0.00	0.0	100.0
26.5	-	-	-		0.00	0.0	100.0
19	-	-	-		0.00	0.0	100.0
9.5	-	-	-	0.00	0.00	0.0	100.0
4.75	-	-	-	27.38	27.38	5.3	94.7
2	-	-	-	54.69	82.07	15.8	84.2

2mmふるい通過分m_{1s}のふるい分析(沈降分析を行わない場合)

ふるい	容器№	(残留試料+容器)質量	容器質量	残留試料質量	加積残留試料質量	加積残留率	加積通過率P	通過質量百分率P(d)
				m(d)	Σm(d)	$\frac{\sum m(d)}{m_{i}} \times 100$	$\left(1-\frac{\sum m(d)}{m_{12}}\right) \times 100$	$\frac{m_s-m_{0s}}{m_s}\times 100$
μm		g	g	g	g	%	%	%
850								
425								
250								
106								
75								
特記事	 項						L	L

試料番号(地点)		盛土部(ローム)				
コアカッター No.		1	2	3	_	
容器 No.		1	2	3	—	
Wa	g	1017.74	1039.38	718.63	_	
Wb	g	613.16	609.80	455.93	_	
Wc	g	200.82	207.16	178.49	—	
W	%	98.12	106.69	94.69	—	
湿潤密度 pt	g/cm^3	1.232	1.274	1.317	—	
平均值 pt	g/cm ³	1.275				
乾燥密度 pd	g/cm ³	0.622	0.617	0.677	_	
平均值 pd	g/cm ³	0.638				
		コアカッ	ター No.1 V=	663.1	cm^3	
備考		コアカッ	ター No.2 V=	653.0	cm^3	
		コアカッ	ッター No.3 V=	410.1	cm ³	

コアカッターによる密度試験結果一覧

試料番号(地点)		基盤部(霞ヶ浦砂-川砂)				
コアカッター No.		1	1	1	_	
容 器 No.		4	5	6	—	
Wa	g	1316.22	1306.5	1355.33	-	
Wb	g	1232.18	1209.77	1253.28		
Wc	g	190.64	200.76	207.11		
W	%	8.07	9.59	9.75	_	
湿潤密度 pt	g/cm^3	1.697	1.668	1.732	_	
平均值 pt	g/cm^3	1.699				
乾燥密度 pd	g/cm^3	1.571	1.522	1.578	—	
平均值 pd	g/cm^3	1.557				
締固め度 D値	%	93				
備考	-	コアカッ	ター No.1 V=	663.1	cm ³	
		最大	乾燥密度 pdmax	1.680	g/cm ³	

試料番号(地点)			埋戻し部 40cm	(霞ヶ浦砂・川砂)	
コアカッター No.		3	3	3	4
容器 No.		7	8	9	10
Wa	g	872.25	925.21	879	811.43
Wb	g	808.8	866.39	816.6	749.26
Wc	g	180.44	237.03	189.03	140.41
W	%	10.10	9.35	9.94	10.21
湿潤密度 pt	g/cm^3	1.687	1.678	1.682	1.636
平均值 pt	g/cm ³	1.671			
乾燥密度 pd	g/cm ³	1.532	1.535	1.530	1.485
平均值 pd	g/cm ³	1.520			
締固め度 D値	%	91			
備考	±	コアカッ	ター No.3 V=	410.1	cm ³
		最大	乾燥密度 pdmax	1.680	g/cm ³

コアカッターによる密度試験結果一覧

試料番号(地点)			埋戻し部 60cm	(霞ヶ浦砂・川砂)		
コアカッター No.		1	1	1	1	
容器 No.		11	12	13	14	
Wa	g	863.43	804.65	844.22	881.5	
Wb	g	806.35	756.63	787.24	824.6	
Wc	g	190.46	139.75	151.59	190.79	
W	%	9.27	7.78	8.96	8.98	
湿潤密度 pt	g/cm^3	1.641	1.621	1.689	1.684	
平均值 pt	g/cm^3	1.659				
乾燥密度 pd	g/cm^3	1.502	1.504	1.550	1.546	
平均值 pd g/cm ³		1.525				
締固め度 D値	%	91				
—————————————————————————————————————	÷	コアカッ	ター No.3 V=	410.1	cm ³	
		最大	乾燥密度 pdmax	1.680	g/cm ³	

試料番号(地点)		埋	戻し部 管中央686	cm(霞ヶ浦砂-川	砂)	
コアカッター No.		1	2	3	4	
容器 No.		15	16	17	18	
Wa	g	853.77	879.26	852.74	843.17	
Wb	g	786.23	815.70	786.33	779.1	
Wc	g	179.04	209.31	186.65	175.04	
W	%	11.12	10.48	11.07	10.61	
湿潤密度 pt	g/cm^3	1.645	1.634	1.624	1.629	
平均值 pt	g/cm^3	1.633				
乾燥密度 pd	g/cm^3	1.481	1.479	1.462	1.473	
平均值 pd	g/cm ³	1.474				
締固め度 D値	%	88				
備一去		コアカッター No.3 V= 410.1 cm ³			cm^3	
در ۱۳		最大	乾燥密度 pdmax	1.680	g/cm ³	

コアカッターによる密度試験結果一覧

転圧確認試験

試料番号(地点)		1回転圧	2回転圧	3回転圧	
コアカッター No.		3	3	3	3
容器 No.		20	21	22	23
Wa	g	822.2	840.14	881.34	851.07
Wb	g	766.21	785.13	822.18	791.23
We	g	178.43	179.41	211.46	181.71
W	%	9.53	9.08	9.69	9.82
湿潤密度 pt	g/cm^3	1.570	1.611	1.633	1.632
平均值 pt	g/cm^3	1.570	1.611	1.633	
乾燥密度 pd	g/cm^3	1.433	1.477	1.489	1.486
平均值 pd	g/cm^3	1.433	1.477	1.488	
締固め度 D値	%	85	88	89	
備考		コアカッ	ター No.3 V=	410.1	cm ³
		最大乾燥密度 pdmax		1.680	g/cm ³

参考資料2 水平スラストカの計算方法

水平スラストカの計算方法

スラストカの対する安全率の計算は、「可とう性継手による曲げ配管工法指針(案)」に示 された方法に従い、設計基準「パイプライン」の曲管の検討に準じた計算式を用いている。 管体がスラストカによって移動するか否かは、以下の検討を行って判定する。

曲げ配管の継手部に作用するスラスト力は参考図1のように曲管と同様に考える。また、 スラストカに対して抵抗力を受ける背面幅は、参高図3に示す通り、屈曲した継手1ヶ所 につき前後の管の有効長の1/2 ずつとする。

また、スラスト力に対する滑動に対する安全率は1.5以上とされている。

参考図1 スラストカの考え方

参考図2 水圧の作用範囲

管が水平方向に屈曲する場合の滑動に対する検討は以下のように行う。

ここに、

Rh: 水平方向抵抗力(管背面の受動土圧)(kN)
P': スラストカ(kN)
S: 安全率(1.5以上)

スラストカ P'は、式(2)により求める。

ここに、

- H: 設計水圧(静水圧+水撃圧)(kN/m²)[参考 1MPa=1000kN/m²]
- ac:設計水圧が作用する範囲の断面積(m²)

参考図2ような継手構造の管では挿し口外径の断面積とする。

- a : 流水断面積 (m²)
- wo:管内水の単位体積重量(kN/m³)
- V:管内平均流速(m/s)

 θ :曲管の曲り角度 (°)

ただし、 $\frac{a \cdot W_o \cdot V^2}{g}$ については、通常の場合無視してよい。

水平方向抵抗力(管背面の受動土圧)Rhは、式(2.3)により求める。

$$R_{h} = F \cdot \frac{1}{2} \cdot K_{p} \cdot w \cdot B_{b} (H_{2}^{2} - H_{1}^{2})$$
(3)

ここに、

F:曲面の受動土圧の補正係数(0.65とする) w: 土の単位体積重量(kN/m³) w': 土の水中単位体積重量(kN/m³) $B_b: 1 屈曲あたりのスラスト力を受ける管背面の幅(m)(参考図3参照)$ $H_1:地表面から管頂面までの深さ(m)$ $H_2:地表面から管底面までの深さ(m)$ $K_p: 受働土圧係数, K_p = tan²(45°+<math>\varphi$ 2)(m) $\varphi: 土の内部摩擦角(°)$

ここに、L1、L2、L3:曲げ配管を行う管の有効長(m)

参考図3 管背面の幅

参考資料3 実験写真

(参)写真-1 管路敷設位置出し

(参)写真-2 管体位置出し

(参)写真-3 PC 鋼棒据え付け

(参)写真-4 下部 PC 鋼棒据え付け完了

(参)写真-5 管体据え付け完了

(参)写真-6 端版取付け

(参)写真-7 端版取付け完了

(参)写真-8 管路曲線部

(参)写真-9 管路完成

(参)写真-10 計測器設置準備

(参)写真-11 変位計取付マンホール設置

(参)写真-12 計測機器準備

(参)写真-13 管軸変位計

⁽参)写真-14 変位計設置(曲線部)

(参)写真-15 変位計設置(直線部)

⁽参)写真-16 土圧計(¢100)準備

(参)写真-17 土圧計(ϕ 100)準備

(参)写真-18 ワイヤー型変位計準備

(参)写真-19 管軸方向変位計

(参)写真-20 エアー抜き孔

(参)写真-21 ワイヤー型変位計設置孔

⁽参)写真-22 ワイヤー型変位計設置孔

(参)写真-23 管軸方向変位計設置

⁽参)写真-24 管軸方向変位計設置

(参)写真-25 管軸方向変位計カバー設置

(参)写真-26 土砂流入防止作業

(参)写真-27 土砂流入防止作業

⁽参)写真-28 管軸方向変位計設置完了

(参)写真-29 ワイヤー型変位計設置孔パイプ

(参)写真-30 ワイヤー型変位計ワイヤ取付け

(参)写真-31 ワイヤー型変位計設置

(参)写真-32 ワイヤー型変位計設置

(参)写真-33 土圧計設置

(参)写真-34 土圧計設置完了

(参)写真-35 ワイヤー型変位計設置完了

(参)写真-36 ワイヤー型変位計設置完了

(参)写真-37 実験 CASE 1 準備

(参)写真-38 上部 PC 鋼棒据付け

(参)写真-39 砂敷き均し

(参)写真-40 土盛準備

(参)写真-41 雨水対策シート

(参)写真-42 土盛開始

(参)写真-43 フレコンバッグ設置

(参)写真-44 フレコンバッグ設置

(参)写真-45 フレコンバッグ設置

(参)写真-46 フレコンバッグ設置完了

(参)写真-47 土盛作業

(参)写真-48 土盛作業

(参)写真-49 盛土敷き均し

(参)写真-50 盛土敷き均し

(参)写真-51 盛土敷き均し完了

⁽参)写真-52 実験 CASE 1 (土被り 1.2m)

(参)写真-53 実験 CASE 1 (土被り 1.2m)

⁽参)写真-54 実験 CASE 1 (土被り 1.2m)

(参)写真-55 圧力計測機器設置

(参)写真-56 圧力計測機器設置

(参)写真-57 水圧ポンプ設置

(参)写真-58 圧力ゲージ

(参)写真-59 水圧ポンプゲージ

(参)写真-60 圧力ゲージ

(参)写真-61 実験 CASE 2 (土被り 0.6m) 雨水対策シート

(参)写真-62 実験 CASE 2 (土被り 0.6m)

(参)写真-63 実験 CASE 2 (土被り 0.6m)

⁽参)写真-64 実験 CASE 3 (土被り 0.2m)

(参)写真-65 実験 CASE 3 (土被り 0.2M)

(参)写真-66 実験 CASE 3 (土被り 0.2M)

(参)写真-67 実験 CASE 4 (土被り 0.2m)

(参)写真-68 実験 CASE 4 (土被り 0.2m)

(参)写真-69 実験 CASE 5 (土被り 0.2m) 背面抵抗土圧なし

(参)写真-70 実験 CASE 5 (土被り 0.2m)

(参)写真-71 実験 CASE 6 (土被り 0.2m)

⁽参)写真-72 実験 CASE 6 (土被り 0.2m)

(参)写真-73 実験 CASE 7 (土被り 0.2m) 背面抵抗土圧なし-管上埋戻し土撤去

⁽参)写真-74 実験 CASE 7 (土被り 0.2m)

(参)写真-75 実験 CASE 7 (土被り 0.2m)

(参)写真-76 実験 CASE 7 (土被り 0.2m)

(参)写真-77 実験 CASE 7 (土被り 0.2m)

(参)写真-78 実験 CASE 8 (土被り Om) 長さ方向拡大掘削

(参)写真-79 実験 CASE 8 (土被り 0m)

⁽参)写真-80 実験 CASE 8 (土被り 0m)

(参)写真-81 管路撤去作業

(参)写真-82 管路撤去作業

(参)写真-83 管路撤去